
大大大模模模型型型时时时代代代的的的神神神经经经符符符号号号计计计算算算

刘群 LIU Qun

华为诺亚方舟实验室

MLA2024第22届机器学习及其应用研讨会

2024.11.03

神经和符号的结合是实现真正的人类水平智能的必经之路

利用符号推理数据训练增强大语言模型的推理能力

基于大语言模型的神经符号系统

利用神经符号系统强化训练的大语言模型

在大语言模型内部引入符号计算模块

总结

Content

神经网络 vs. 符号计算
神经网络 符号计算

数学基础 微积分、概率论、信息论 图论、形式语法、形式逻辑、概率论

典型方法 感知机、卷积网络、循环神经网络、
Transformer、图神经网络

正则表达式、短语结构语法、Parsing、
一阶逻辑、知识图谱、专家系统、倒排检索

擅长问题 分类、表示学习、生成 精确匹配、规则推导、逻辑推导

弱点 精确匹配、长链条推理 学习能力、模糊推理

1 total: 69

大语言模型（LLM）具备了一定的符号处理能力

▶ 早期的神经网络并不具备任何符号处理能力
▶ 后来神经网络发展出了输入输出符号序列的能力：

▶ 词嵌入技术赋予了神经网络接收符号输入的能力
▶ 位置编码使得神经网络能够接受符号序列（语言）的输入
▶ Softmax使得神经网络能够输出符号
▶ 自回归生成生成使得神经网络能够输出连续的符号（语言）

▶ 现在的神经网络，特别是基于Transformer的LLM，已经能够进行完成很多符号
处理的任务，包括机器翻译这样复杂的任务

▶ LLM在思维链技术加持下，已经具备了一定程度的符号推理能力
▶ LLM辅以基于长思维链的强化学习技术（o1），数学代码能力达到了超越普通
人的水平

2 total: 69

大语言模型的符号计算能力仍然欠缺

Published as a conference paper at ICLR 2024

THE REVERSAL CURSE:
LLMS TRAINED ON “A IS B” FAIL TO LEARN “B IS A”

Lukas Berglund
Vanderbilt University

Meg Tong
Independent

Max Kaufmann
UK AI Safety Institute

Mikita Balesni
Apollo Research

Asa Cooper Stickland
New York University

Tomasz Korbak
University of Sussex

Owain Evans∗
University of Oxford

ABSTRACT

We expose a surprising failure of generalization in auto-regressive large language
models (LLMs). If a model is trained on a sentence of the form “A is B”, it will
not automatically generalize to the reverse direction “B is A”. This is the Reversal
Curse. For instance, if a model is trained on “Valentina Tereshkova was the first
woman to travel to space”, it will not automatically be able to answer the question,
“Who was the first woman to travel to space?”. Moreover, the likelihood of the
correct answer (“Valentina Tershkova”) will not be higher than for a random name.
Thus, models do not generalize a prevalent pattern in their training set: if “A is B”
occurs, “B is A” is more likely to occur. It is worth noting, however, that if “A is B”
appears in-context, models can deduce the reverse relationship.

We provide evidence for the Reversal Curse by finetuning GPT-3 and Llama-1
on fictitious statements such as “Uriah Hawthorne is the composer of Abyssal
Melodies” and showing that they fail to correctly answer “Who composed Abyssal
Melodies?”. The Reversal Curse is robust across model sizes and model families
and is not alleviated by data augmentation. We also evaluate ChatGPT (GPT-
3.5 and GPT-4) on questions about real-world celebrities, such as “Who is Tom
Cruise’s mother? [A: Mary Lee Pfeiffer]” and the reverse “Who is Mary Lee
Pfeiffer’s son?”. GPT-4 correctly answers questions like the former 79% of the
time, compared to 33% for the latter.

Code available at: https://github.com/lukasberglund/reversal_
curse.

Figure 1: Inconsistent knowledge in GPT-4. GPT-4 correctly gives the name of Tom Cruise’s
mother (left). Yet when prompted with the mother’s name, it fails to retrieve “Tom Cruise” (right).
We hypothesize this ordering effect is due to the Reversal Curse. Models trained on “A is B” (e.g.
“Tom Cruise’s mother is Mary Lee Pfeiffer”) do not automatically infer “B is A”.

1 INTRODUCTION

If a human learns the fact “Valentina Tereshkova was the first woman to travel to space”, they can
also correctly answer “Who was the first woman to travel to space?”. This is such a basic form
of generalization that it seems trivial. Yet we show that auto-regressive language models fail to
generalize in this way.

∗Corresponding author: owaine@gmail.com

1

ar
X

iv
:2

30
9.

12
28

8v
4

 [
cs

.C
L

]
 2

6
M

ay
 2

02
4

Published as a conference paper at ICLR 2024

THE REVERSAL CURSE:
LLMS TRAINED ON “A IS B” FAIL TO LEARN “B IS A”

Lukas Berglund
Vanderbilt University

Meg Tong
Independent

Max Kaufmann
UK AI Safety Institute

Mikita Balesni
Apollo Research

Asa Cooper Stickland
New York University

Tomasz Korbak
University of Sussex

Owain Evans∗
University of Oxford

ABSTRACT

We expose a surprising failure of generalization in auto-regressive large language
models (LLMs). If a model is trained on a sentence of the form “A is B”, it will
not automatically generalize to the reverse direction “B is A”. This is the Reversal
Curse. For instance, if a model is trained on “Valentina Tereshkova was the first
woman to travel to space”, it will not automatically be able to answer the question,
“Who was the first woman to travel to space?”. Moreover, the likelihood of the
correct answer (“Valentina Tershkova”) will not be higher than for a random name.
Thus, models do not generalize a prevalent pattern in their training set: if “A is B”
occurs, “B is A” is more likely to occur. It is worth noting, however, that if “A is B”
appears in-context, models can deduce the reverse relationship.

We provide evidence for the Reversal Curse by finetuning GPT-3 and Llama-1
on fictitious statements such as “Uriah Hawthorne is the composer of Abyssal
Melodies” and showing that they fail to correctly answer “Who composed Abyssal
Melodies?”. The Reversal Curse is robust across model sizes and model families
and is not alleviated by data augmentation. We also evaluate ChatGPT (GPT-
3.5 and GPT-4) on questions about real-world celebrities, such as “Who is Tom
Cruise’s mother? [A: Mary Lee Pfeiffer]” and the reverse “Who is Mary Lee
Pfeiffer’s son?”. GPT-4 correctly answers questions like the former 79% of the
time, compared to 33% for the latter.

Code available at: https://github.com/lukasberglund/reversal_
curse.

Figure 1: Inconsistent knowledge in GPT-4. GPT-4 correctly gives the name of Tom Cruise’s
mother (left). Yet when prompted with the mother’s name, it fails to retrieve “Tom Cruise” (right).
We hypothesize this ordering effect is due to the Reversal Curse. Models trained on “A is B” (e.g.
“Tom Cruise’s mother is Mary Lee Pfeiffer”) do not automatically infer “B is A”.

1 INTRODUCTION

If a human learns the fact “Valentina Tereshkova was the first woman to travel to space”, they can
also correctly answer “Who was the first woman to travel to space?”. This is such a basic form
of generalization that it seems trivial. Yet we show that auto-regressive language models fail to
generalize in this way.

∗Corresponding author: owaine@gmail.com

1

ar
X

iv
:2

30
9.

12
28

8v
4

 [
cs

.C
L

]
 2

6
M

ay
 2

02
4

常识理解 数学推理

3 (1) total: 69

大语言模型的符号计算能力仍然欠缺

▶ LLM仍然不具备基本的数数能力：
▶ “Strawberry中有多少个字母r”这个漏洞虽然被大部分模型补上了，实际上换一
个单词和字母，类似的问题仍然层出不穷

▶ 类似的数数问题，当数目比较大的时候，LLM大概率还是容易出错
▶ LLM在一些简单的常识推理中也还很容易犯错：

3 (2) total: 69

实现真正的人类水平智能，需要AI模型中引入符号计算吗？

不需要，神经网络将通过Scaling Law将
自然获得符号计算的能力

需要，神经网络无法精确推理，需研究神
经符号结合的方法

Geoffery Hilton Ilya Sutskever Yoshua Bengio Gary Marcus

4 total: 69

大语言模型还不真正具备系统2的思考能力

▶ 人类思维分为两个系统，神经网络比较好地模拟了系统1，而系统2的思维更多
是基于符号的

▶ LLM Agent和o1具备了系统2的某些特点（如记忆、推理等），但离人类的思维
仍然具有较大差距

5 total: 69

生物智能的进化 vs. 人工智能的进化
客观世界

原子、分子
声、光、电
物质、波
……

6 (1) total: 69

生物智能的进化 vs. 人工智能的进化
客观世界

生物神经网络

原子、分子
声、光、电
物质、波
……

6 (2) total: 69

生物智能的进化 vs. 人工智能的进化

语言表达

客观世界

生物神经网络 字、词
句、篇

原子、分子
声、光、电
物质、波
……

6 (3) total: 69

生物智能的进化 vs. 人工智能的进化

语言表达

人类知识

客观世界

生物神经网络 字、词
句、篇

实体、属性
关系、事件
时空、因果
……
数学、物理
化学、生物
……

原子、分子
声、光、电
物质、波
……

6 (4) total: 69

生物智能的进化 vs. 人工智能的进化

语言表达

人类知识

客观世界

生物神经网络 字、词
句、篇

实体、属性
关系、事件
时空、因果
……
数学、物理
化学、生物
……

原子、分子
声、光、电
物质、波
……

精确性

冗余度

6 (5) total: 69

生物智能的进化 vs. 人工智能的进化

人工神经网络

语言表达

人类知识

客观世界

参数

字、词
句、篇

实体、属性
关系、事件
时空、因果
……
数学、物理
化学、生物
……

原子、分子
声、光、电
物质、波
……

精确性

冗余度

6 (6) total: 69

生物智能的进化 vs. 人工智能的进化

人工神经网络

语言表达

人类知识

客观世界

大语言模型

参数

字、词
句、篇

实体、属性
关系、事件
时空、因果
……
数学、物理
化学、生物
……

原子、分子
声、光、电
物质、波
……

精确性

冗余度

6 (7) total: 69

生物智能的进化 vs. 人工智能的进化

人工神经网络

语言表达

人类知识

客观世界

大语言模型

参数

字、词
句、篇

实体、属性
关系、事件
时空、因果
……
数学、物理
化学、生物
……

原子、分子
声、光、电
物质、波
……

精确性

冗余度

6 (8) total: 69

神经与符号的GAP是目前大模型很多问题的根源

▶ 人类认知表示最自然的形式是实体、
属性、关系、时空、事件、因果等
等，这些都最适合用符号来表示

▶ 而目前的大语言模型的基本构成单位
是参数，所有的计算和推理都发生在
参数之间，跟认知所使用的符号表示
的形式存在巨大的差异

▶ 这种差异是造成目前大模型很多问题
的根源

神经与符号

接地
Grounding

对齐
Alignment

世界模型

可解释性

System1 &
System2

确定性与
不确定性

因果与相关

7 total: 69

符号化知识表示的形式

▶ Declarative knowledge陈述性知识
▶ 描述概念、实体、事实
▶ 以陈述句形式描述

▶ Procedural knowledge过程性知识
▶ 包括规则、策略、过程、议程等
▶ 可以执行完成任务

▶ Meta-knowledge元知识
▶ 关于知识的知识

▶ Heuristic knowledge启发式知识
▶ 专家根据经验获得的领域或专业知识

▶ Structural knowledge结构化知识
▶ 概念之间的上下位或者整体部分关系等知识
▶ 解决问题所需要的知识

Source: https://www.javatpoint.com/knowledge-representation-in-ai

8 total: 69

https://www.javatpoint.com/knowledge-representation-in-ai

符号化知识表示的类型

▶ 自然语言
▶ 词、短语、句子、篇章

▶ 语义网（Semantic Web）、知识图谱
▶ 知识本体（Ontologies）
▶ 实体知识图谱（Entities/Relations/Facts）
▶ 事理知识图谱（Events）

▶ 程序语言（规则都可以表示为程序）
▶ 函数式程序语言、过程式程序语言、面向对象程序语言

▶ 逻辑语言
▶ 布尔逻辑、命题逻辑、描述逻辑、构造逻辑、一阶谓词逻辑、高阶谓词逻辑

▶ 图表语言
▶ 表格（Tables、Spreadsheets）、图（graphs）、自由图表（Diagrams）

9 (1) total: 69

符号化知识表示的类型

自然语言

图表语言

形式语言

程序语言 逻辑语言

中文, English, Español, Français, Deutsch, 日本語, Русский, Português, Italiano, 한국어

表格 图 自由图表

产生式规则

Python

C C++

Latex
Json

Markdown

HTML

JavaScript
布尔逻辑

命题逻辑描述逻辑

构造逻辑

一阶谓词逻辑

高阶谓词逻辑知识图谱

9 (2) total: 69

符号化知识表示的多样性难题

▶ 神经网络为所有问题提供统一的解决方案，而符号化知识形式非常多样化，每
种形式特点不同，面临的问题也不同

▶ 不同的符号化知识表示形式，需要采用不同的方式与神经网络结合

▶ 是否存在统一的形式化知识表示形式，可以解决所有符号推理问题？

▶ 如果不存在，有哪些主要的符号化知识表示形式？各自有什么特点？如何与大
语言模型结合进行推理？

10 total: 69

神经和符号的结合是实现真正的人类水平智能的必经之路

利用符号推理数据训练增强大语言模型的推理能力

基于大语言模型的神经符号系统

利用神经符号系统强化训练的大语言模型

在大语言模型内部引入符号计算模块

总结

Content

通过思维链及其衍生技术强化大语言模型本身的推理能力

▶ 大语言模型可以通过思维链Chain-of-Thought及其各种衍生的X-of-Thought
（如思维树Tree-of-Thought，思维图Graph-of-Thought等）来实现一定的符号
推理能力

▶ 由于预训练数据已经包含了一定的推理数据，大模型本身已经具备一定的思维
链推理能力

▶ 如果需要实现更强的类思维链推理能力，需要构造更多的推理数据，采
用SFT等方式，就可以使模型获得此类推理能力

▶ 通过各种类思维链数据SFT实现的推理能力通常比较有限

11 total: 69

Chain-of-Thought and Thinking-Step-by-Step

(c) Zero-shot
Q: A juggler can juggle 16 balls. Half of the balls are golf balls,
and half of the golf balls are blue. How many blue golf balls are
there?
A: The answer (arabic numerals) is

(Output) 8 X

(d) Zero-shot-CoT (Ours)
Q: A juggler can juggle 16 balls. Half of the balls are golf balls,
and half of the golf balls are blue. How many blue golf balls are
there?
A: Let’s think step by step.

(Output) There are 16 balls in total. Half of the balls are golf
balls. That means that there are 8 golf balls. Half of the golf balls
are blue. That means that there are 4 blue golf balls. ✓

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis
balls. Each can has 3 tennis balls. How many tennis balls does
he have now?
A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6
tennis balls. 5 + 6 = 11. The answer is 11.

Q: A juggler can juggle 16 balls. Half of the balls are golf balls,
and half of the golf balls are blue. How many blue golf balls are
there?
A:

(Output) The juggler can juggle 16 balls. Half of the balls are golf
balls. So there are 16 / 2 = 8 golf balls. Half of the golf balls are
blue. So there are 8 / 2 = 4 blue golf balls. The answer is 4. ✓

(b) Few-shot-CoT(a) Few-shot

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis
balls. Each can has 3 tennis balls. How many tennis balls does
he have now?
A: The answer is 11.

Q: A juggler can juggle 16 balls. Half of the balls are golf balls,
and half of the golf balls are blue. How many blue golf balls are
there?
A:

(Output) The answer is 8. X

Figure 1: Example inputs and outputs of GPT-3 with (a) standard Few-shot ([Brown et al., 2020]), (b)
Few-shot-CoT ([Wei et al., 2022]), (c) standard Zero-shot, and (d) ours (Zero-shot-CoT). Similar to
Few-shot-CoT, Zero-shot-CoT facilitates multi-step reasoning (blue text) and reach correct answer
where standard prompting fails. Unlike Few-shot-CoT using step-by-step reasoning examples per
task, ours does not need any examples and just uses the same prompt “Let’s think step by step” across
all tasks (arithmetic, symbolic, commonsense, and other logical reasoning tasks).

In contrast to the excellent performance of LLMs in intuitive and single-step system-1 [Stanovich
and West, 2000] tasks with task-specific few-shot or zero-shot prompting [Liu et al., 2021b], even
language models at the scale of 100B or more parameters had struggled on system-2 tasks requiring
slow and multi-step reasoning [Rae et al., 2021]. To address this shortcoming, Wei et al. [2022],
Wang et al. [2022] have proposed chain of thought prompting (CoT), which feed LLMs with the
step-by-step reasoning examples rather than standard question and answer examples (see Fig. 1-a).
Such chain of thought demonstrations facilitate models to generate a reasoning path that decomposes
the complex reasoning into multiple easier steps. Notably with CoT, the reasoning performance then
satisfies the scaling laws better and jumps up with the size of the language models. For example,
when combined with the 540B parameter PaLM model [Chowdhery et al., 2022], chain of thought
prompting significantly increases the performance over standard few-shot prompting across several
benchmark reasoning tasks, e.g., GSM8K (17.9%→ 58.1%).

While the successes of CoT prompting [Wei et al., 2022], along those of many other task-specific
prompting work [Gao et al., 2021, Schick and Schütze, 2021, Liu et al., 2021b], are often attributed
to LLMs’ ability for few-shot learning [Brown et al., 2020], we show that LLMs are decent zero-shot
reasoners by adding a simple prompt, Let’s think step by step, to facilitate step-by-step thinking before
answering each question (see Figure 1). Despite the simplicity, our Zero-shot-CoT successfully
generates a plausible reasoning path in a zero-shot manner and reaches the correct answer in a
problem where the standard zero-shot approach fails. Importantly, our Zero-shot-CoT is versatile and
task-agnostic, unlike most prior task-specific prompt engineering in the forms of examples (few-shot)
or templates (zero-shot) [Liu et al., 2021b]: it can facilitate step-by-step answers across various
reasoning tasks, including arithmetic (MultiArith [Roy and Roth, 2015], GSM8K [Cobbe et al., 2021],
AQUA-RAT [Ling et al., 2017], and SVAMP [Patel et al., 2021]), symbolic reasoning (Last letter and
Coin flip), commonsense reasoning (CommonSenseQA [Talmor et al., 2019] and Strategy QA [Geva
et al., 2021]), and other logical reasoning tasks (Date understanding and Tracking Shuffled Objects
from BIG-bench [Srivastava et al., 2022]) without modifying the prompt per task.

We empirically evaluate Zero-shot-CoT against other prompting baselines in Table 2. While our
Zero-shot-CoT underperforms Few-shot-CoT with carefully-crafted and task-specific step-by-step ex-
amples, Zero-shot-CoT achieves enormous score gains compared to the zero-shot baseline, e.g. from
17.7% to 78.7% on MultiArith and from 10.4% to 40.7% on GSM8K with large-scale InstructGPT

2

Kojima et al., Large Language Models are Zero-Shot Reasoners, arXiv:2205.11916v4, 2023

12 total: 69

Self-consistency improves CoT
Published as a conference paper at ICLR 2023

Language
model

Q: If there are 3 cars in the parking
lot and 2 more cars arrive, how many
cars are in the parking lot?
A: There are 3 cars in the parking lot
already. 2 more arrive. Now there are
3 + 2 = 5 cars. The answer is 5.
…
Q: Janet’s ducks lay 16 eggs per day.
She eats three for breakfast every
morning and bakes muffins for her
friends every day with four. She sells
the remainder for $2 per egg. How
much does she make every day?
A:

She has 16 - 3 - 4 = 9 eggs
left. So she makes $2 * 9 =
$18 per day.

Sample a diverse set of
reasoning paths

She eats 3 for breakfast, so
she has 16 - 3 = 13 left. Then
she bakes muffins, so she
has 13 - 4 = 9 eggs left. So
she has 9 eggs * $2 = $18.

This means she she sells the
remainder for $2 * (16 - 4 - 3)
= $26 per day.

The answer is $18.

The answer is $26.

The answer is $18.

The answer is $18.

Marginalize out reasoning paths
to aggregate final answers

Language
model

This means she uses 3 + 4 = 7 eggs every day.
She sells the remainder for $2 per egg, so in
total she sells 7 * $2 = $14 per day.
The answer is $14.

The answer is $14.

Greedy decode

Figure 1: The self-consistency method contains three steps: (1) prompt a language model using
chain-of-thought (CoT) prompting; (2) replace the “greedy decode” in CoT prompting by sampling
from the language model’s decoder to generate a diverse set of reasoning paths; and (3) marginalize
out the reasoning paths and aggregate by choosing the most consistent answer in the final answer set.

Self-consistency is far simpler than prior approaches that either train an additional verifier (Cobbe
et al., 2021) or train a re-ranker given additional human annotations to improve generation quality
(Thoppilan et al., 2022). Instead, self-consistency is entirely unsupervised, works off-the-shelf with
pre-trained language models, requires no additional human annotation, and avoids any additional
training, auxiliary models or fine-tuning. Self-consistency also differs from a typical ensemble
approach where multiple models are trained and the outputs from each model are aggregated, it acts
more like a “self-ensemble” that works on top of a single language model.

We evaluate self-consistency on a wide range of arithmetic and commonsense reasoning tasks over
four language models with varying scales: the public UL2-20B (Tay et al., 2022) and GPT-3-175B
(Brown et al., 2020), and two densely-activated decoder-only language models: LaMDA-137B
(Thoppilan et al., 2022) and PaLM-540B (Chowdhery et al., 2022). On all four language models,
self-consistency improves over chain-of-thought prompting by a striking margin across all tasks. In
particular, when used with PaLM-540B or GPT-3, self-consistency achieves new state-of-the-art levels
of performance across arithmetic reasoning tasks, including GSM8K (Cobbe et al., 2021) (+17.9%
absolute accuracy gains), SVAMP (Patel et al., 2021) (+11.0%), AQuA (Ling et al., 2017) (+12.2%),
and across commonsense reasoning tasks such as StrategyQA (Geva et al., 2021) (+6.4%) and ARC-
challenge (Clark et al., 2018) (+3.9%). In additional experiments, we show self-consistency can
robustly boost performance on NLP tasks where adding a chain-of-thought might hurt performance
compared to standard prompting (Ye & Durrett, 2022). We also show self-consistency significantly
outperforms sample-and-rank, beam search, ensemble-based approaches, and is robust to sampling
strategies and imperfect prompts.

2 SELF-CONSISTENCY OVER DIVERSE REASONING PATHS

A salient aspect of humanity is that people think differently. It is natural to suppose that in tasks
requiring deliberate thinking, there are likely several ways to attack the problem. We propose that
such a process can be simulated in language models via sampling from the language model’s decoder.
For instance, as shown in Figure 1, a model can generate several plausible responses to a math
question that all arrive at the same correct answer (Outputs 1 and 3). Since language models are not
perfect reasoners, the model might also produce an incorrect reasoning path or make a mistake in
one of the reasoning steps (e.g., in Output 2), but such solutions are less likely to arrive at the same
answer. That is, we hypothesize that correct reasoning processes, even if they are diverse, tend to
have greater agreement in their final answer than incorrect processes.

We leverage this intuition by proposing the following self-consistency method. First, a language
model is prompted with a set of manually written chain-of-thought exemplars (Wei et al., 2022). Next,

2

Wang et al., Self-Consistency Improves Chain Of Thought Reasoning In Language Models, arXiv:2203.11171v4, 2022

13 total: 69

Progressive-Hint Prompting improves CoT

Q: There are 96 fourth-graders at Small Tree School. 43 of
them are girls. On Friday, 5 fourth-grade girls and 4 fourth-
grade boys were absent. How many fourth grade boys were
at Small Tree School on Friday?

A: There were 96 fourth-graders at Small Tree School. 43 of
them were girls. On Friday, 5 girls and 4 boys were absent.
So there were 43 - 5 = 38 girls at school on Friday, and 96 -
38 = 58 boys at school on Friday. The answer is 58.

A: We know the Answer Hints: 58. With the Answer
Hints: 58, we will answer the question. There were 96
fourth-graders at Small Tree School, and 43 of them were
girls.On Friday, 5 girls and 4 boys were absent.So there
were 43 - 5 = 38 girls and 96 - 43 = 53 boys at Small Tree
School on Friday.After subtracting the absent students,
there were 38 - 4 = 34 girls and 53 - 5 = 48 boys. The
answer is 48.

Q: There are 96 fourth-graders at Small Tree School. 43 of
them are girls. On Friday, 5 fourth-grade girls and 4 fourth-
grade boys were absent. How many fourth grade boys were
at Small Tree School on Friday? (Hint: The answer is near
to 58).

A: We know the Answer Hints: 58, 48. With the Answer
Hints: 58, 48, we will answer the question. There were 96
fourth-graders, and 43 of them were girls. On Friday, 5 girls
and 4 boys were absent. So there were 43 - 5 = 38 girls and
96 - 9 = 87 students in total. Of those 87 students, 38 were
girls, so there must have been 87 - 38 = 49 boys. The
answer is 49.

Q: There are 96 fourth-graders at Small Tree School. 43 of
them are girls. On Friday, 5 fourth-grade girls and 4 fourth-
grade boys were absent. How many fourth grade boys were
at Small Tree School on Friday? (Hint: The answer is near
to 58, 48).

A: We know the Answer Hints: 58, 48, 49. With the
Answer Hints: 58, 48, 49, we will answer the question.
There were 96 fourth-graders at Small Tree School, and 43
of them were girls. On Friday, 5 girls and 4 boys were
absent. So there were 43 - 5 = 38 girls and 96 - 43 = 53
boys originally. After the absences, there were 38 - 5 = 33
girls and 53 - 4 = 49 boys. The answer is 49.

Q: There are 96 fourth-graders at Small Tree School. 43 of
them are girls. On Friday, 5 fourth-grade girls and 4 fourth-
grade boys were absent. How many fourth grade boys were
at Small Tree School on Friday? (Hint: The answer is near
to 58, 48, 49).

Base
Answer

Second
Answer

Fourth
Answer

Third
Answer

LLM

LLM

LLM

LLM

Base Prompting

Progressive-Hint Prompting

Progressive-Hint Prompting

Progressive-Hint Prompting

Figure 1: Our proposed Progressive-Hint Prompting method combines the generated answers and
questions for double-checking purposes, which is divided into two stages. In the first stage, we
generate a base answer by passing to the LLM a concatenation of the current question and a base
prompt, such as CoT or Complex CoT. In the second stage, we generate the subsequent answers via
the corresponding progressive-hint prompt, such as Progressive-Hint Prompting CoT (PHP-CoT)
or Progressive-Hint Prompting Complex CoT (PHP-Complex CoT), for the subsequent interaction.
The interaction stops when two consecutive answers are the same. Purple Box: The input of LLM.
Orange Box: The output of LLM.

operation in (2) until the answer is stable and does not change over the last two answers. PHP follows
a human-like thought process where previous answers are leveraged as hints to arrive at the correct
answer after re-evaluating the question.

Figure 1 illustrates the proposed PHP framework. We use the base prompt to obtain the initial base
answer, and then employ the PHP prompt for subsequent questions. If the current answer matches the
previous answer, it is more likely to be correct, and we terminate the LLM inquiry. With Complex
CoT and GPT-4, after adding PHP, the performance achieves SOTA with 91.9% on SVAMP [11],
95.5% on GSM8K [12], and 79.9% on AQuA [13] and 53.9% on MATH [14].

In summary, our contributions are as follows:

• We propose a new method, Progressive-Hint Prompting (PHP), alongside CoT and self-
consistency, for improving LLM reasoning abilities.

• We demonstrate the effectiveness of PHP through extensive experimentation, including
baseline comparisons and ablation studies, using four LLMs, text-davinci-002 and text-
davinci-003, GPT-3.5-Turbo and GPT-4 [15–17].

• The experiment results show that our method can also improve performance with self-
consistency.

• We believe that progressive-hint prompting represents an important step towards automatic
sequential interaction with LLMs and hope that it inspires future research in this field.

2 Related Work

Emergent Abilities and Multi-Step Reasoning. LLMs are particularly skilled at in-context learning,
which involves adhering to the structure of prompts (typically few-shot) and completing corresponding
tasks [15, 18–20]. Among the diverse range of language comprehension tasks, we are particularly

2

Zheng et al., Progressive-Hint Prompting Improves Reasoning in Large Language Models, arXiv:2304.09797v5, 2023

14 total: 69

Think Before You Speak: Training LMs With Pause Tokens
Published as a conference paper at ICLR 2024

25+ 294 is

25 + 4 isInputs

Targets

Layer 2

Layer 1

Ignore
Output

Prefix Prompt

4 is52+

(a) Standard inference and finetuning

294 is25+

52+ <pause> <pause> <pause> 25+Inputs

Targets
Ignore
Output

Prefix Prompt with pause tokens

Ignore
Output

Layer 2

Layer 1

4= 4 is

(b) Pause-inference and finetuning

Figure 1: Standard vs. pause-inference (and finetuning). We consider a downstream task where,
given a prefix, the decoder-only model (bidirectionally) attends to all of the prefix to generate its
target answer. The rounded squares denote one Transformer operation (a self-attention and MLP)
in a 2-layer Transformer. Any Ignore Output denotes that during inference, the corresponding out-
put token is not extracted and thus, not fed back autoregressively; during finetuning, this output
is not backpropagated through. The connecting lines denote some (not all) of the “computational
pathways” within the model. Specifically, we visualize only those pathways that begin at a specific
token in the prefix (here arbitrarily chosen to be “4 is”) and end at an output token (here arbitrarily
chosen to be “25+”). All differences between the two settings are highlighted in color. (a) In stan-
dard inference (finetuning), the model’s output is extracted immediately upon seeing the last prefix
token. (b) In pause-inference (and pause-finetuning), this is initiated only after appending a manu-
ally specified number of <pause> tokens. This introduces new computational pathways (the colored
lines) between the prefix token and the output token of interest.

Crucially, we consider injecting such delays not just at inference, but also during downstream fine-
tuning (see Fig 1) and pretraining (see Fig 2, which provides additional technical details).

A-priori, it is unclear what this simple change would bring about in practice. Optimistically, the
Transformer may take advantage of a “wider” computational pathway induced by the delay. A
more mundane outcome though would be that the model simply skips any delays introduced by the
<pause> tokens. After all, neither do the <pause> tokens provide any additional information during
inference, nor are there sufficiently many new parameters (barring the few embedding parameters
of the single <pause> token) that can encode any additional information from training data. Worse
still, these uninformative tokens may drown out informative signals, and hurt the model.

Partial answers to this question can be found in the literature, motivated somewhat differently. To un-
derstand where the benefits of chain-of-thought (Wei et al., 2022) come from, Lanham et al. (2023)
append dummy thoughts in the form of periods (‘...’), but only during inference. This, they report,
does not help. Presumably, an off-the-shelf model may not have learned to utilize the new compu-
tational pathways offered by the inference-time delay. Burtsev et al. (2020) learn with prepended
dummy tokens, with the orthogonal motivation of adding memory (rather than extending computa-
tion). They train with these tokens only on the target task, and observe minimal performance gains.

What then can we hope for when injecting (appended) delays on all stages of training and inference?
Our work empirically evaluates this, and other key questions that come up when training the Trans-
former with delays. For this, we study pause-training on a 1B and 130M parameter decoder-only
model, trained on C4 (Raffel et al., 2020) and finetuned on nine downstream tasks spanning extrac-
tive question answering, reasoning, general understanding and fact recall. In summary, we make the
following contributions:

(1) We pose the question of what happens if we delay a model’s answer generation, and how can we
execute these delays? We design one way: training with dummy <pause> tokens. Accordingly,
we design a pause-injected pretraining, downstream finetuning, and inference procedure.

(2) We find that on a variety of downstream tasks, training models with <pause> tokens during both
pretraining and downstream finetuning, exhibits clear gains compared to standard end-to-end
training and inference. Most notably, for the 1B model, in the SQuAD extractive question-

2

Published as a conference paper at ICLR 2024

Inputs

Targets soccer

Layer 2

Layer 1

iskid

The kid is playing

playing

(a) Standard pretraining

soccer

<pause> playing <pause>Inputs

Targets playing
Ignore
Output

Ignore
Output

Layer 1

Layer 2

iskid

isThe kid

(b) Pause-pretraining

Figure 2: Standard vs. pause-pretraining. We consider pretraining based on causal language mod-
eling, where each token is predicted given all preceding tokens in the sequence, using unidirectional
self-attention. Here, we visualize the computational pathways beginning from the token “is” on the
input side of the decoder-only model, to a subsequent token “soccer” on the output side. Please see
Figure 1 for a guide on how to follow this visualization. (a) In standard pretraining, we compute the
model’s loss at each output token, and backpropagate through it. (b) In pause-pretraining, we insert
multiple copies of <pause> tokens at uniformly random locations in the input. However, we do not
apply a loss on the model to predict these tokens, as indicated by each corresponding Ignore Out-
put flags. This introduces new computational pathways connecting the input token and the output
token of interest.

role the above characters play in natural language, we choose a single <pause> token residing outside
of the standard vocabulary. To impose multi-token delays, we simply repeat this token. Building on
this core idea, below we discuss our specific techniques for pause-pretraining and pause-finetuning.

Pretraining with the <pause> token The sequences in our pretraining data do not come with an
annotation of which suffix constitutes the answer, since every input token also functions as a target
output. Thus, it is impossible to execute the simple delaying strategy of appending dummy tokens
before extracting the answer. Therefore, for a given pretraining sequence p1:N , we insert multiple
<pause> tokens (say Mpt many) at uniformly random locations to obtain a pause-injected sequence,
p̃1:N+Mpt

. We visualize this in Figure 2b. We then train the model with the standard next-token
prediction loss on this pause-injected sequence, while ignoring any loss term that corresponds to
predicting the pause tokens themselves. Formally, let Signore = {k : p̃k+1 = <pause>} denote the
positions where the next token is a <pause> token. Then, for the decoder-only language model f ,
the pause-training loss is given by:

LPausePT(f, p̃1:N+Mpt
) =

N+Mpt−1∑

k=1
k/∈Signore

LCE(p̃k+1, f(p̃1:k)), (3)

where LCE denotes the cross-entropy loss. Observe that the loss is skipped over indices in Signore.
The rationale is that, we only want to use the <pause> tokens as a way of enforcing a delay in
the model’s computation; demanding that the model itself produce these tokens, would only be a
pointless distraction. Finally, as is standard, we update the parameters of both the model and of all
the tokens, including those of the <pause> token. We term this pause-pretraining (Algorithm 1).

Finetuning with the <pause> token In downstream finetuning, we are given a prefix p1:N an-
notated with a target t1:T . Here, we append Mft copies of the <pause> token to p1:N , to cre-
ate our new prefix, p̃1:N+Mft

. We visualize how this introduces new computational pathways in
Figure 1. As before, we ignore the model’s outputs until the last <pause> token is seen. We
apply the standard next-token prediction loss on the target with the new prefix, thus minimizing∑T−1

k=0 LCE(tk+1, f([p1:N+Mft
, t1:k])), where [·] denotes the concatenation operation. Note that

for any given downstream task, we fix Mft to be the same across all inputs for that task. We again

4

Published as a conference paper at ICLR 2024

7.0

7.5

8.0

8.5

Ac
cu

ra
cy

GSM8K

36

42

48

54

EM

SQuAD V1

27.5

30.0

32.5

35.0

EM

CommonSenseQA

13.5

15.0

16.5

18.0

19.5

EM

LAMBADA

12.0

13.5

15.0

16.5

EM

WebQA

23

24

25

26

27

EM

NaturalQA

30.0

30.5

31.0

31.5

F1

CoQA

73.2

73.5

73.8

74.1

F1

PhysicalIQA

36.8

37.2

37.6

38.0

38.4

F1

HellaSwag

Training Algorithms
StdPT_StdFT
StdPT_PauseFT
PausePT_StdFT
PausePT_PauseFT

Figure 3: Downstream performance for a 1B model. Injecting delays in both stages of training
(PausePT PauseFT) outperforms the standard end-end training StdPT StdFT on our wide variety of
tasks (except HellaSwag). In contrast, introducing delays only in the finetuning stage provides only
lukewarm gains, and even hurts in GSM8k.

long term context recall (LAMBADA (Paperno et al., 2016)), (e) natural language inference (Hel-
laSwag (Zellers et al., 2019)), and (f) fact recall (WebQuestions (Berant et al., 2013), Natural Ques-
tions (Kwiatkowski et al., 2019)). HellaSwag and PhysicalIQA are scoring tasks. We note that our
implementation of CommonSenseQA is as a decoding task, and hence we report Exact Match (EM)
scores. Detailed dataset description is in Appendix G.

4.3 RESULTS: EFFECT OF PAUSE-TRAINING

We report the performance of the four approaches in §3.2 on all our downstream tasks for our 1B
model in Figure 3, and for our 130M model in Appendix B. We discuss zero-shot results in §D.

The benefit of pause-pretraining followed by pause-finetuning (PausePT PauseFT). Our first core
finding is that there are clear gains when <pause> tokens are introduced during both pretraining and
finetuning (PausePT PauseFT), across a majority of the tasks we consider. Overall, this outperforms
the standard baseline (StdPT StdFT) on eight tasks for the 1B model, and on six tasks for the 130M
model (Appendix Fig 5) albeit to varying extents. Most prominently, for the 1B model on the
SQuAD question-answering task, PausePT PauseFT improves over StdPT StdFT by an 18% EM
score. Similarly, we observe upto 8% gains on the general understanding task of CommonSenseQA.
On the reasoning task of GSM8k, PausePT PauseFT gives an accuracy of 8.5% compared to 7.5% of
the standard baseline. Similar gains are observed in other tasks like long-term context understanding
(LAMBADA) and also on fact recall tasks like WebQA and NaturalQuestion.

The lukewarm effect of pause-finetuning a standard-pretrained model (StdPT PauseFT).
In contrast to the above observations, introducing delays only during downstream finetuning
(StdPT PauseFT) gives mixed results. While there are gains on about 5 benchmarks, they are com-
paritively less. On the remaining, the performance mirrors (or is worse than) standard training.

Isolating the benefits of pause-pretraining independent of downstream delay (PausePT StdFT).
The gains in PausePT PauseFT may come not only from inference-time delays, but also from better
representations learned by pause-pretraining. To isolate the latter effect, we consider PausePT StdFT,
where we do not inject delays in the downstream task. Here the gains are clear only in two tasks
(CoQA and PhysicalIQA). Thus, we conclude that pause-pretraining improves the representation for
a few downstream tasks; conversely, in most tasks, the gains of PausePT PauseFT must come from
well-learned delayed computations executed at inference-time.

Filler characters as <pause>: For completeness, we also report results for inference on
StdPT StdFT models, delayed with 10 or 50 periods (‘.’). Corroborating the observations of Lanham
et al. (2023), we find no gains in doing this (Figure 4a).

6

15 total: 69

神经和符号的结合是实现真正的人类水平智能的必经之路

利用符号推理数据训练增强大语言模型的推理能力

基于大语言模型的神经符号系统

利用神经符号系统强化训练的大语言模型

在大语言模型内部引入符号计算模块

总结

Content

基于大语言模型的神经符号系统

▶ 大语言模型（LLM）本身虽然具备了一定程度的符号处理能力，但它还是一个纯粹的
神经网络系统，而不是一个神经符号计算系统，因为LLM中完全没有独立的符号计算
组件（component）。

▶ 大语言模型（LLM）只有跟独立的符号系统组件相结合，各司其职，互相合作，才能
称为一个神经符号计算系统。

▶ 基于大语言模型的神经符号系统，根据其结合的符号系统类型，大致可以分成以下一
些类别：
▶ 融合搜索引擎的大语言模型（RAG）
▶ 融合工具插件调用的大语言模型
▶ 基于大语言模型的智能体（LLM Agent）
▶ 使用大语言模型增强的逻辑推理系统

16 total: 69

基于大语言模型的神经符号系统

融合搜索引擎的大语言模型：扩展知识的边界

融合工具和插件调用的大语言模型：借助外部符号工具能力

基于大语言模型的智能体（LLM Agent）：综合性神经符号系统

使用大语言模型增强的逻辑推理系统：实现数学定理证明

Content

检索增强的生成（RAG）：LLM+搜索引擎

▶ 搜索引擎是一种典型的符号系统，RAG通过LLM调用搜索引擎，并把搜索的结
果反馈给LLM，可以为LLM引入外部知识，大大缓解LLM训练数据有限带来的
知识不足（如时效性和专业性等方面）问题

▶ RAG的变化形式很多，比如搜索的对象可以是网页、知识图谱、知识库、领域
知识等等

▶ RAG会带来很多新的问题需要解决
▶ RAG和思维链的结合，解决很多复杂的自然语言问题

17 total: 69

Pangu-Web系统框架结合搜索能力的盘古大模型

搜索 --------[1]---
----------[2]-
--------[3][4]

Summary：

[1]: 知识源1
[2]: 知识源2
[3]: 知识源3
[4]: 知识源4

知识片段

②信息搜集 ③信息整合

用户查询

决策

①搜索决策

盘古语言模型

生成

18 (1) total: 69

Pangu-Web系统框架
The Combination of Pangu Sophon and Search Engine

• Framework

Search decision making

Query type/intent analysis

Temporal analysis

Search or not conclusion

Search query generation

Web/local doc browsing

Web browsing

Quote extraction

Quote re-ranking

Dialogue history

World real-time state

Closed-book answering
Answer

AnswerPages/
Quotes

w/ search

w/o search

Web knowledge Domain knowledge

Web pages Chunks
QA pairs
KBs

Answer composition

Linguistic summarization

Temporal reasoning

Logical reasoning

Adversarial answering

…
Rejection sampling

18 (2) total: 69

Pangu-Web样例：回答实时问题Cases: Real-time answering

19 total: 69

Pangu-Web样例：回答误导性问题

Cases: Adversarial answering

20 total: 69

Pangu-Web样例：拒绝回答问题

Cases: Refuse to answer

21 total: 69

Pangu-Web样例：回答长尾问题Cases: Long-tail question answering

22 total: 69

Pangu-Web样例：回答代码问题Cases: code answering

23 total: 69

Geek: A method for implicit Boolean QA

HUAWEI TECHNOLOGIES Co., Ltd. Huawei Confidentiality 1

Geek: A method for implicit Boolean question answering
⚫ Motivation and Intuition

 Implicit Boolean questions requires more

exploration to form a solving strategy

 We hope to leverage external knowledge instead of

vanilla CoT to answer reasoning-based question

⚫ Method

 GEEK: We propose a pipeline that Gradually Excavating

External Knowledge to search the strategy

 First work to formalize implicit Boolen QA procedure and

define a four-actions space to enable the strategy

Question: Can Mate 60 pro still work in Mount
Qomolangma?

Consider air temperature?

Consider base station signal?

Consider air pressure?

24 (1) total: 69

Geek: A method for implicit Boolean QA

HUAWEI TECHNOLOGIES Co., Ltd. Huawei Confidentiality 2

⚫ Evaluation and achievements

 GEEK achieves the SOTA accuracy for LLMs in ∼10B

scale, and also surpasses the previous best method

with backbone under 300B scale, with less than 6%

parameters

 Published at EMNLP 2023

Geek: A method for implicit Boolean question answering

24 (2) total: 69

知识图谱、语义网Semantic Web

▶ 在W3C推动下，语义网有一套比较完备的形式化语义描述体系，包括RDF、
Schema、Ontology、N-Tuples、SPARQL等，具备描述逻辑的表达能力

文因互联 保密信息41

知识图谱语言：RDF and OWL

知识图谱语言：RDF and OWL 文因互联 保密信息

W3C语义网技术栈（中文版）

W3C语义网技术栈

Slides: 鲍捷：从语义网到知识图谱——Web知识技术体系的变迁

25 total: 69

知识图谱技术金字塔

文因互联 保密信息

5
6

规则（Rule）

本体（Ontology）

模式（Schema）

图（Graph）

表格（Table）

标签（Label & Tag）

文本（Text）

浅层语义
分析

表格理解

知识抽取

本体学习

机
器
学
习

逻辑
知识

模式

实例

数据工程

非结构化数据

知识图谱
（知识工程）

结
构
化
数
据

图谱分析

56

知识图谱技术金字塔

Slides: 鲍捷：从语义网到知识图谱——Web知识技术体系的变迁

26 total: 69

知识图谱与神经网络的结合

▶ 语义网和知识图谱的大规模实践表明，逻辑形式的表示在实践中对语义的精确性要求
过于严格，不具备可行性

▶ 在实践中，知识图谱被大大简化，仅仅表示为三元组形式的实体图谱和事理图谱，以
及概念层次结构

▶ 简化后的三元组式的知识图谱（包括事理图谱）在搜索引擎和信息推荐等特定领域获
得了较广泛的应用

▶ 在通用领域，知识图谱仍然面临知识覆盖率太低的问题，特别是与大语言模型相比

▶ 自由文本知识图谱（Free-Text Knowledge Graph）允许对实体和关系采用任意自然语
言描述，可以一定程度上缓解知识图谱表达能力的不足，但依然很受限。

▶ 知识图谱与神经网络（大语言模型）结合的方式：
▶ 使用大语言模型自动生成知识图谱：准确率无法保障，覆盖率仍然不足；
▶ 把知识图谱转换成文本形式用于语言模型预训练：数据量被其他预训练数据淹没，效果有
限；

▶ 通过检索增强（RAG）方式实时查询知识图谱用于推理：可以有效提高推理准确性，减少
幻觉。

27 total: 69

GraphRAG

▶ 什么是GraphRAG？
▶ GraphRAG是一种基于知识图谱的检索增强技术。通过构建图模型的知识表达，
将实体和关系之间的联系用图的形式展示出来，然后利用大语言模型（LLM）进
行检索增强。

▶ GraphRAG的工作原理：
▶ 提取实体：从用户输入的查询中提取关键实体。
▶ 构建子图：根据提取的实体构建相关的子图，形成上下文。
▶ 生成答案：将构建好的子图输入大语言模型，生成答案。

▶ GraphRAG引起了较多的重视，取得了一定的成功。
资料来源：CSDN Blog: GraphRAG：知识图谱+大模型,作者：Python_金钱豹

28 total: 69

符号化知识表示的其他形式

▶ 除了自然语言、知识图谱、程序代码、逻辑命题之外，还存在很多其他的符号化表示
形式：
▶ 事件时间线
▶ 思维导图
▶ 表格
▶ 电路图
▶ 日历
▶ 建筑设计图
▶ 演示胶片
▶ 广告设计图
▶ ……

▶ 大量的各种符号化知识都存在于这些非正规的表示形式中，缺乏系统全面的梳理

▶ 其中部分图表可以转化为专业的描述语言（如电路图、设计图）

▶ 大量图表都无法表示成形式语言的描述，只能以图片形式保存

29 total: 69

图像（image）作为大语言模型和符号化知识的接口

▶ 相比语言，图像可以提供更多、更直观的信息：

设想一下，如果想用文字传达右图

的所有信息，应该如何表述？

▶ 如何表述金字塔的层次结构？

▶ 如何表述颜色深浅传达的信
息？

▶ 如何表述周边的文字标注和金
字塔层级的关系？

文因互联 保密信息

5
6

规则（Rule）

本体（Ontology）

模式（Schema）

图（Graph）

表格（Table）

标签（Label & Tag）

文本（Text）

浅层语义
分析

表格理解

知识抽取

本体学习

机
器
学
习

逻辑
知识

模式

实例

数据工程

非结构化数据

知识图谱
（知识工程）

结
构
化
数
据

图谱分析

56

知识图谱技术金字塔

▶ 直接把这种非规范的图表以图像形式输入到多模态大模型中，也是一种合理的
神经符号结合方法。

30 (1) total: 69

图像（image）作为大语言模型和符号化知识的接口

Glyce: Glyph-vectors for Chinese Character
Representations

Yuxian Meng*, Wei Wu*, Fei Wang*, Xiaoya Li*, Ping Nie, Fan Yin
Muyu Li, Qinghong Han, Xiaofei Sun and Jiwei Li

Shannon.AI
{yuxian meng, wei wu, fei wang, xiaoya li, ping nie, fan yin,
muyu li, qinghong han, xiaofei sun, jiwei li}@shannonai.com

Abstract

It is intuitive that NLP tasks for logographic languages like Chinese should benefit
from the use of the glyph information in those languages. However, due to the
lack of rich pictographic evidence in glyphs and the weak generalization ability of
standard computer vision models on character data, an effective way to utilize the
glyph information remains to be found.
In this paper, we address this gap by presenting Glyce, the glyph-vectors for
Chinese character representations. We make three major innovations: (1) We use
historical Chinese scripts (e.g., bronzeware script, seal script, traditional Chinese,
etc) to enrich the pictographic evidence in characters; (2) We design CNN structures
(called tianzege-CNN) tailored to Chinese character image processing; and (3)
We use image-classification as an auxiliary task in a multi-task learning setup to
increase the model’s ability to generalize.
We show that glyph-based models are able to consistently outperform word/char
ID-based models in a wide range of Chinese NLP tasks. We are able to set new state-
of-the-art results for a variety of Chinese NLP tasks, including tagging (NER, CWS,
POS), sentence pair classification, single sentence classification tasks, dependency
parsing, and semantic role labeling. For example, the proposed model achieves an
F1 score of 80.6 on the OntoNotes dataset of NER, +1.5 over BERT; it achieves an
almost perfect accuracy of 99.8% on the Fudan corpus for text classification. 1 2

1 Introduction

Chinese is a logographic language. The logograms of Chinese characters encode rich information of
their meanings. Therefore, it is intuitive that NLP tasks for Chinese should benefit from the use of
the glyph information. Taking into account logographic information should help semantic modeling.
Recent studies indirectly support this argument: Radical representations have proved to be useful
in a wide range of language understanding tasks [Shi et al., 2015, Li et al., 2015, Yin et al., 2016,
Sun et al., 2014, Shao et al., 2017]. Using the Wubi scheme — a Chinese character encoding method
that mimics the order of typing the sequence of radicals for a character on the computer keyboard
—- is reported to improve performances on Chinese-English machine translation [Tan et al., 2018].
Cao et al. [2018] gets down to units of greater granularity, and proposed stroke n-grams for character
modeling.

Recently, there have been some efforts applying CNN-based algorithms on the visual features of
characters. Unfortunately, they do not show consistent performance boosts [Liu et al., 2017, Zhang

1* indicates equal contribution.
2code is available at https://github.com/ShannonAI/glyce.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

ar
X

iv
:1

90
1.

10
12

5v
5

 [
cs

.C
L

]
 2

1
M

ay
 2

02
0

Figure 2: Combing glyph information with BERT.

denotes the starting value, λ1 ∈ [0, 1] denotes the decaying value. This means that the influence from
the image classification objective decreases as the training proceeds, with the intuitive explanation
being that at the early stage of training, we need more regulations from the image classification task.
Adding image classification as a training objective mimics the idea of multi-task learning.

2.4 Combing Glyph Information with BERT

The glyph embeddings can be directly output to downstream models such as RNNs, LSTMs, trans-
formers.

Since large scale pretraining systems using language models, such as BERT [Devlin et al., 2018],
ELMO [Peters et al., 2018] and GPT [Radford et al., 2018], have proved to be effective in a wide range
of NLP tasks, we explore the possibility of combining glyph embeddings with BERT embeddings.
Such a strategy will potentially endow the model with the advantage of both glyph evidence and
large-scale pretraining. The overview of the combination is shown in Figure 2. The model consists of
four layers: the BERT layer, the glyph layer, the Glyce-BERT layer and the task-specific output layer.

• BERT Layer Each input sentence S is concatenated with a special CLS token denoting the
start of the sentence, and a SEP token, denoting the end of the sentence. Given a pre-trained
BERT model, the embedding for each token of S is computed using BERT. We use the
output from the last layer of the BERT transformer to represent the current token.

• Glyph Layer the output glyph embeddings of S from tianzege-CNNs.
• Glyce-BERT layer Position embeddings are first added to the glyph embeddings. The

addition is then concatenated with BERT to obtain the full Glyce representations.
• Task-specific output layer Glyce representations are used to represent the token at that

position, similar as word embeddings or Elmo emebddings [Peters et al., 2018]. Contextual-
aware information has already been encoded in the BERT representation but not glyph
representations. We thus need additional context models to encode contextual-aware glyph
representations. Here, we choose multi-layer transformers [Vaswani et al., 2017]. The
output representations from transformers are used as inputs to the prediction layer. It is
worth noting that the representations the special CLS and SEP tokens are maintained at the
final task-specific embedding layer.

3 Tasks

In this section, we describe how glypg embeddings can be used for different NLP tasks. In the vanilla
version, glyph embeddings are simply treated as character embeddings, which are fed to models built
on top of the word-embedding layers, such as RNNs, CNNs or more sophisticated ones. If combined

4

Figure 3: Using Glyce-BERT model for different tasks.

with BERT, we need to specifically handle the integration between the glyph embeddings and the
pretrained embeddings from BERT in different scenarios, as will be discussed in order below:

Sequence Labeling Tasks Many Chinese NLP tasks, such as name entity recognition (NER),
Chinese word segmentation (CWS) and part speech tagging (POS), can be formalized as character-
level sequence labeling tasks, in which we need to predict a label for each character. For glyce-BERT
model, the embedding output from the task-specific layer (described in Section 2.4) is fed to the CRF
model for label predictions.

Single Sentence Classification For text classification tasks, a single label is to be predicted for the
entire sentence. In the BERT model, the representation for the CLS token in the final layer of BERT is
output to the softmax layer for prediction. We adopt the similar strategy, in which the representation
for the CLS token in the task-specific layer is fed to the softmax layer to predict labels.

Sentence Pair Classification For sentence pair classification task like SNIS [Bowman et al., 2015],
a model needs to handle the interaction between the two sentences and outputs a label for a pair of
sentences. In the BERT setting, a sentence pair (s1, s2) is concatenated with one CLS and two SEP
tokens, denoted by [CLS, s1, SEP, s2, SEP]. The concatenation is fed to the BERT model, and the
obtained CLS representation is then fed to the softmax layer for label prediction. We adopt the similar
strategy for Glyce-BERT, in which [CLS, s1, SEP, s2, SEP] is subsequently passed through the BERT
layer, Glyph layer, Glyce-BERT layer and the task-specific output layer. The CLS representation from
the task-specific output layer is fed to the softmax function for the final label prediction.

4 Experiments

To enable apples-to-apples comparison, we perform grid parameter search for both baselines and the
proposed model on the dev set. Tasks that we work on are described in order below.

4.1 Tagging

NER For the task of Chinese NER, we used the widely-used OntoNotes, MSRA, Weibo and resume
datasets. Since most datasets don’t have gold-standard segmentation, the task is normally treated
as a char-level tagging task: outputting an NER tag for each character. The currently most widely
used non-BERT model is Lattice-LSTMs [Yang et al., 2018, Zhang and Yang, 2018], achieving better
performances than CRF+LSTM [Ma and Hovy, 2016].

CWS : The task of Chinese word segmentation (CWS) is normally treated as a char-level tagging
problem. We used the widely-used PKU, MSR, CITYU and AS benchmarks from SIGHAN 2005
bake-off for evaluation.

5

Figure 1: Illustration of the Tianzege-CNN used in Glyce.

2 Glyce

2.1 Using Historical Scripts

As discussed in Section 1, pictographic information is heavily lost in the simplified Chinese script.
We thus propose using scripts from various time periods in history and also of different writing styles.
We collect the following major historical script with details shown in Table 1. Scripts from different
historical periods, which are usually very different in shape, help the model to integrate pictographic
evidence from various sources; Scripts of different writing styles help improve the model’s ability to
generalize. Both strategies are akin to widely-used data augmentation strategies in computer vision.

2.2 The Tianzige-CNN Structure for Glyce

Directly using deep CNNs He et al. [2016], Szegedy et al. [2016], Ma et al. [2018a] in our task
results in very poor performances because of (1) relatively smaller size of the character images:
the size of Imagenet images is usually at the scale of 800*600, while the size of Chinese character
images is significantly smaller, usually at the scale of 12*12; and (2) the lack of training examples:
classifications on the imageNet dataset utilizes tens of millions of different images. In contrast,
there are only about 10,000 distinct Chinese characters. To tackle these issues, we propose the
Tianzige-CNN structure, which is tailored to Chinese character modeling as illustrated in Figure 1.
Tianzige (田字格) is a traditional form of Chinese Calligraphy. It is a four-squared format (similar
to Chinese character田) for beginner to learn writing Chinese characters. The input image ximage
is first passed through a convolution layer with kernel size 5 and output channels 1024 to capture
lower level graphic features. Then a max-pooling of kernel size 4 is applied to the feature map which
reduces the resolution from 8× 8 to 2× 2, . This 2× 2 tianzige structure presents how radicals are
arranged in Chinese characters and also the order by which Chinese characters are written. Finally,
we apply group convolutions [Krizhevsky et al., 2012, Zhang et al., 2017] rather than conventional
convolutional operations to map tianzige grids to the final outputs . Group convolutional filters are
much smaller than their normal counterparts, and thus are less prone to overfitting. It is fairly easy to
adjust the model from single script to multiple scripts, which can be achieved by simply changing the
input from 2D (i.e., dfont × dfont) to 3D (i.e., dfont × dfont ×Nscript), where dfont denotes the font size
and Nscript the number of scripts we use.

2.3 Image Classification as an Auxiliary Objective

To further prevent overfitting, we use the task of image classification as an auxiliary training objective.
The glyph embedding himage from CNNs will be forwarded to an image classification objective to
predict its corresponding charID. Suppose the label of image x is z. The training objective for the
image classification task L(cls) is given as follows:

L(cls) = − log p(z|x)
= − log softmax(W × himage)

(1)

Let L(task) denote the task-specific objective for the task we need to tackle, e.g., language modeling,
word segmentation, etc. We linearly combine L(task) and L(cl), making the final objective training
function as follows:

L = (1− λ(t)) L(task) + λ(t)L(cls) (2)
where λ(t) controls the trade-off between the task-specific objective and the auxiliary image-
classification objective. λ is a function of the number of epochs t: λ(t) = λ0λ

t
1, where λ0 ∈ [0, 1]

3

CTB5
Model P R F
Shao et al. [2017] (Sig) 93.68 94.47 94.07
Shao et al. [2017] (Ens) 93.95 94.81 94.38
Lattice-LSTM 94.77 95.51 95.14
Glyce+Lattice-LSTM 95.49 95.72 95.61

(+0.47)
BERT 95.86 96.26 96.06
Glyce+BERT 96.50 96.74 96.61

(+0.55)
CTB6

Model P R F
Shao et al. [2017] (Sig) - - 90.81
Lattice-LSTM 92.00 90.86 91.43
Glyce+Lattice-LSTM 92.72 91.14 91.92

(+0.49)
BERT 94.91 94.63 94.77
Glyce+BERT 95.56 95.26 95.41

(+0.64)

CTB9
Model P R F
Shao et al. [2017] (Sig) 91.81 94.47 91.89
Shao et al. [2017] (Ens) 92.28 92.40 92.34
Lattice-LSTM 92.53 91.73 92.13
Lattice-LSTM+Glyce 92.28 92.85 92.38

(+0.25)
BERT 92.43 92.15 92.29
Glyce+BERT 93.49 92.84 93.15

(+0.86)
UD1

Model P R F
Shao et al. [2017] (Sig) 89.28 89.54 89.41
Shao et al. [2017] (Ens) 89.67 89.86 89.75
Lattice-LSTM 90.47 89.70 90.09
Lattice-LSTM+Glyce 91.57 90.19 90.87

(+0.78)
BERT 95.42 94.17 94.79
Glyce+BERT 96.19 96.10 96.14

(+1.35)

Table 4: Results for POS tasks.

The current non-BERT SOTA model is based on the bilateral multi-perspective matching model
(BiMPM) [Wang et al., 2017], which specifically tackles the subunit matching between sentences.
Glyph embeddings are incorporated into BiMPMs, forming the Glyce+BiMPM baseline. Results
regarding each model on different datasets are given in Table 5. As can be seen, BiPMP+Glyce
outperforms BiPMPs, achieving the best results among non-bert models. BERT outperforms all
non-BERT models, and BERT+Glyce performs the best, setting new SOTA results on all of the four
benchmarks.

BQ
Model P R F A
BiMPM 82.3 81.2 81.7 81.9
Glyce+BiMPM 81.9 85.5 83.7 83.3

(+2.0) (+1.4)
BERT 83.5 85.7 84.6 84.8
Glyce+BERT 84.2 86.9 85.5 85.8

(+0.9) (+1.0)
XNLI

Model P R F A
BiMPM - - - 67.5
Glyce+BiMPM - - - 67.7

(+0.2)
BERT - - - 78.4
Glyce+BERT - - - 79.2

(+0.8)

LCQMC
Model P R F A
BiMPM 77.6 93.9 85.0 83.4
Glyce+BiMPM 80.4 93.4 86.4 85.3

(+1.4) (+1.9)
BERT 83.2 94.2 88.2 87.5
Glyce+BERT 86.8 91.2 88.8 88.7

(+0.6) (+1.2)
NLPCC-DBQA

Model P R F A
BiMPM 78.8 56.5 65.8 -
Glyce+BiMPM 76.3 59.9 67.1 -

(+1.3) -
BERT 79.6 86.0 82.7 -
Glyce+BERT 81.1 85.8 83.4 -

(+0.7) -

Table 5: Results for sentence-pair classification tasks.

Model ChnSentiCorp the Fudan corpus iFeng
LSTM 91.7 95.8 84.9

LSTM + Glyce 93.1 96.3 85.8
(+ 1.4) (+0.5) (+0.9)

BERT 95.4 99.5 87.1
Glyce+BERT 95.9 99.8 87.5

(+0.5) (+0.3) (+0.4)

Table 6: Accuracies for Single Sentence Classification task.

7

Dependency Parsing
Model UAS LAS
Ballesteros et al. [2016] 87.7 86.2
Kiperwasser and Eliyahu [2016] 87.6 86.1
Cheng et al. [2016] 88.1 85.7
Biaffine 89.3 88.2

Biaffine+Glyce 90.2 89.0
(+0.9) (+0.8)

Semantic Role Labeling
Model P R F
Roth and Lapata [2016] 76.9 73.8 75.3
Marcheggiani and Diego [2017] 84.6 80.4 82.5
He et al. [2018] 84.2 81.5 82.8

k-order pruning+Glyce 85.4 82.1 83.7
(+0.8) (+0.6) (+0.9)

Table 7: Results for dependency parsing and SRL.

4.3 Single Sentence Classification

For single sentence/document classification, we need to output a label for a text sequence. The label
could be either a sentiment indicator or a news genre. Datasets that we use include: (1) ChnSentiCorp
(binary classification); (2) the Fudan corpus (5-class classification) [Li, 2011]; and (3) Ifeng (5-class
classification).

Results for different models on different tasks are shown in Table 6. We observe similar phenomenon
as before: Glyce+BERT achieves SOTA results on all of the datasets. Specifically, the Glyce+BERT
model achieves an almost perfect accuracy (99.8) on the Fudan corpus.

4.4 Dependency Parsing and Semantic Role Labeling

For dependency parsing [Chen and Manning, 2014, Dyer et al., 2015], we used the widely-used
Chinese Penn Treebank 5.1 dataset for evaluation. Our implementation uses the previous state-of-the-
art Deep Biaffine model Dozat and Manning [2016] as a backbone. We replaced the word vectors
from the biaffine model with Glyce-word embeddings, and exactly followed its model structure and
training/dev/test split criteria. We report scores for unlabeled attachment score (UAS) and labeled
attachment score (LAS). Results for previous models are copied from [Dozat and Manning, 2016,
Ballesteros et al., 2016, Cheng et al., 2016]. Glyce-word pushes SOTA performances up by +0.9 and
+0.8 in terms of UAS and LAS scores.

For the task of semantic role labeling (SRL) [Roth and Lapata, 2016, Marcheggiani and Diego, 2017,
He et al., 2018], we used the CoNLL-2009 shared-task. We used the current SOTA model, the k-order
pruning algorithm [He et al., 2018] as a backbone.4 We replaced word embeddings with Glyce
embeddings. Glyce outperforms the previous SOTA performance by 0.9 with respect to the F1 score,
achieving a new SOTA score of 83.7.

BERT does not perform competitively in these two tasks, and results are thus omitted.

5 Ablation Studies

In this section, we discuss the influence of different factors of the proposed model. We use the
LCQMC dataset of the sentence-pair prediction task for illustration. Factors that we discuss include
training strategy, model architecture, auxiliary image-classification objective, etc.

5.1 Training Strategy

This section talks about a training tactic (denoted by BERT-glyce-joint), in which given task-specific
supervisions, we first fine-tune the BERT model, then freeze BERT to fine-tune the glyph layer,
and finally jointly tune both layers until convergence. We compare this strategy with other tactics,
including (1) the Glyph-Joint strategy, in which BERT is not fine-tuned in the beginning: we first

4Code open sourced at https://github.com/bcmi220/srl_syn_pruning

8

30 (2) total: 69

图像（image）作为大语言模型和符号化知识的接口

Autoformalizing Euclidean Geometry

Logan Murphy 1 * Kaiyu Yang 2 * Jialiang Sun 1 Zhaoyu Li 1 Anima Anandkumar 2 Xujie Si 1

Abstract
Autoformalization involves automatically trans-
lating informal math into formal theorems and
proofs that are machine-verifiable. Euclidean ge-
ometry provides an interesting and controllable
domain for studying autoformalization. In this
paper, we introduce a neuro-symbolic framework
for autoformalizing Euclidean geometry, which
combines domain knowledge, SMT solvers, and
large language models (LLMs). One challenge in
Euclidean geometry is that informal proofs rely
on diagrams, leaving gaps in texts that are hard to
formalize. To address this issue, we use theorem
provers to fill in such diagrammatic information
automatically, so that the LLM only needs to aut-
oformalize the explicit textual steps, making it
easier for the model. We also provide automatic
semantic evaluation for autoformalized theorem
statements. We construct LeanEuclid, an auto-
formalization benchmark consisting of problems
from Euclid’s Elements and the UniGeo dataset
formalized in the Lean proof assistant. Experi-
ments with GPT-4 and GPT-4V show the capa-
bility and limitations of state-of-the-art LLMs on
autoformalizing geometry problems. The data
and code are available at https://github.
com/loganrjmurphy/LeanEuclid.

1. Introduction
Euclidean geometry is one of the oldest branches of mathe-
matics. It has served as a test of human intelligence for more
than two millennia and has recently been used to test AI.
Substantial work has focused on solving geometry problems
automatically (Wu, 2008), e.g., AlphaGeometry (Trinh et al.,
2023) can solve some of the IMO geometry problems. These
methods consume problems and produce solutions in struc-
tured formats. In this work, we address a complementary

*Equal contribution 1University of Toronto 2Caltech. Corre-
spondence to: Logan Murphy <lmurphy@cs.toronto.edu>, Kaiyu
Yang <kaiyuy@caltech.edu>, Xujie Si <six@cs.toronto.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

task, autoformalization: Can AI understand human-written
problems/solutions and translate them automatically into for-
mal theorems/proofs? Specifically, we focus on the setting
where formal theorems/proofs can be verified by the Lean
proof assistant (de Moura & Ullrich, 2021). Lean provides
a language for writing formal proofs. It is popular among
mathematicians and has a growing ecosystem of integration
with large language models (LLMs), e.g., LeanDojo (Yang
et al., 2023) and Lean Copilot (Song et al., 2024).

We demonstrate that Euclidean geometry provides an inter-
esting and controllable domain for autoformalization. First,
an automatic evaluation of autoformalized theorems is diffi-
cult in general but feasible in Euclidean geometry. Second,
the logical gaps in informal proofs are well understood in
Euclidean geometry, making it easier to faithfully formalize
the proofs. Third, combining text-based and diagrammatic
reasoning makes Euclidean geometry a natural domain to
study multimodal reasoning models. Therefore, autoformal-
izing Euclidean geometry is an attractive target for AI.

Evaluating Autoformalized Theorem Statements. De-
spite the promise of machine learning and LLMs in autofor-
malizing theorems (Wu et al., 2022), a major roadblock is
the lack of reliable and automatic evaluation. Comparing
the model output verbatim with ground truth would be too
rigid since there are many valid ways to formalize a theorem.
Checking the logical equivalence between two theorems is
generally intractable. Researchers have resorted to proxy
metrics such as the BLEU score (Papineni et al., 2002).
However, LLMs can score high on such metrics without
generating correct formalization (Jiang et al., 2023b). Al-
ternatively, human evaluation is widely used as a last resort,
but it is costly, especially if we want to use the results to
improve the method iteratively.

Our Approach to Evaluating Autoformalization. To
overcome the evaluation bottleneck, we introduce a new
automatic approach for evaluating the semantics of auto-
formalized theorems. The key insight is that equivalence
checking can be made feasible in specific domains (such as
Euclidean geometry) by combining domain knowledge with
automated reasoning tools, such as satisfiability modulo
theories (SMT) solvers (Barrett & Tinelli, 2018).

To evaluate the autoformalized theorems, we develop a sym-

1

ar
X

iv
:2

40
5.

17
21

6v
1

 [
cs

.L
G

]
 2

7
M

ay
 2

02
4

Autoformalizing Euclidean Geometry

Informal Euclidean geometry problem

Equivalent?

Autoformalized proof

Autoformalized theorem

Ground truth theorem

a b : Point
AB : Line
BCD ACE : Circle
isCenter a BCD
onCircle b BCD
isCenter b ACE
onCircle a ACE
⊢ intersects BCD ACE

Diagrammatic reasoning gaps

…
⊢ …

…

SMT-based symbolic
reasoning engine

…

Figure 1. Left: Proposition 1 in Euclid’s Elements (Book I). The orange text involves diagrammatic reasoning: Euclid did not explicitly
prove the two circles actually intersect, but the reader can use the diagram to implicitly fill in the logical gap. Top right: The model
autoformalizes the problem into a formal theorem (proposition 1’), which is evaluated by checking its logical equivalence with the
ground truth (proposition 1), leveraging domain knowledge and a symbolic automated reasoning engine based on SMT (satisfiability
modulo theories) solvers. Bottom right: A proof autoformalized by the model. Like Euclid’s proofs, it does not need to handle
diagrammatic reasoning explicitly. Lean can check the proof to identify a list of diagrammatic reasoning gaps, e.g., “intersects BCD
ACE”. Then, it attempts to fill in all gaps automatically using the symbolic reasoning engine based on SMT solvers.

bolic reasoning engine based on SMT solvers. As Fig. 1
(Top right) shows, given a ground-truth formal theorem Tgt

and the autoformalized theorem Tpred produced by a lan-
guage model, we use the symbolic engine to try to prove
their equivalence (Tgt ⇔ Tpred). If successful, their logi-
cal gap is small enough to conclude that Tpred is correct.
Even if the symbolic engine cannot prove Tgt ⇔ Tpred, it
can provide partial results useful for a more fine-grained
analysis. We validate this evaluation protocol by showing it
correlates well with human evaluation.

LeanEuclid: Formalizing Proofs and Diagrams. We
construct LeanEuclid, a benchmark for testing machine
learning on autoformalizing Euclidean geometry. As in Fig 1
(Left), each example in LeanEuclid has an informal theorem,
proof, and diagram in LATEX, as well as a formal theorem
and proof in Lean. Data examples in LeanEuclid are manu-
ally formalized into Lean from Euclid’s Elements (Heiberg,
2007) and the UniGeo dataset (Chen et al., 2022).

LeanEuclid serves as a benchmark for autoformalizing not
only theorems but also proofs. Geometric proofs are chal-
lenging to formalize faithfully. Humans (ancient or modern,
including Euclid himself) use diagrams to license proof
steps without making every detail explicit. Fig. 1 shows an
example of diagrammatic reasoning from Euclid’s Elements.

Euclid uses the intersection of two circles (C) without prov-
ing its existence. Most readers would not find the proof
problematic, as the two circles intersect in the diagram.
Such implicit diagrammatic reasoning is ubiquitous in in-
formal geometric proofs but needs to be handled explicitly
in formal proofs (Beeson et al., 2019). Therefore, a naive
attempt to autoformalize the proofs would be difficult, as it
requires the model to fill in many diagrammatic reasoning
gaps, with nothing to reference in the informal texts.

To mitigate diagrammatic gaps, LeanEuclid adopts a for-
mal system named E (Avigad et al., 2009), introduced by
philosophers for modeling diagrammatic reasoning in Eu-
clid’s Elements. It teases out a set of diagrammatic rules
so that diagrammatic reasoning can be modeled as logical
deductions. We implement E in Lean and provide proof
automation to fill in diagrammatic reasoning gaps, using the
same symbolic reasoning engine developed for equivalence
checking. Our system enables formalizing all 48 theorems
and proofs from Elements (Book I), following Euclid’s orig-
inal proofs as closely as possible, with diagrammatic reason-
ing carried out implicitly and automatically (see Fig. 1). The
data is included in LeanEuclid, making autoformalizing Eu-
clid’s proofs feasible. The language model now only needs
to autoformalize the explicit textual proof steps, leaving the
“obvious” implicit reasoning to the symbolic engine.

2

Autoformalizing Euclidean Geometry

Why is Formalizing Theorem Statements Hard? Com-
pared to previous autoformalization results (Wu et al., 2022),
our experiments show that the models struggle to correctly
formalize most of the theorems in our dataset. We suspect
this is primarily a result of using the formal system E as a
specification language. E is designed primarily as a proof
system, and not as a specification language; as noted by
Avigad, many basic relation constructs in E (e.g., between,
sameSide) are almost never mentioned explicitly in Eu-
clid’s actual writing (Avigad et al., 2009). Furthermore,
the language can only refer to composite structures (angles,
triangles, etc.) in terms of their atomic components (points,
lines, etc.). This makes theorem statements in E relatively
verbose, and this verbosity introduces more room for the
model to make small mistakes.

In summary, while state-of-the-art models struggle to suc-
cessfully autoformalize many of the theorems in our dataset,
we see that E3 can successfully identify and quantify the
correctness of autoformalized theorem statements; in partic-
ular, despite being incomplete by design, E3 only produces
a small number of false negatives. We believe that E3 can
significantly facilitate the training and validation of autofor-
malization models targeting Euclidean geometry. Moreover,
we believe that similar tools can be developed for other
domains if an appropriate formal theory can be defined.

5.2. Autoformalizing Proofs

To check whether LeanEuclid is a suitable target for auto-
formalizing proofs, we attempted to autoformalize proofs
from Elements and UniGeo using GPT-4 and GPT-4V.

Experimental Setup. We tested each model against 43
proofs from Elements and 100 proofs from UniGeo. To
demonstrate concretely the capabilities and limitations of the
model in writing formal LeanEuclid proofs, we attempted
to formalize entire proofs from single queries, rather than
using an iterative or search-based autoformalization proce-
dure. We evaluated the formalized UniGeo proofs based
on whether it is verified by Lean as-is, and experimented
with 0-shot, 1-shot, and 5-shot prompts. The proofs from
Elements are more complex, so we did not anticipate many
proofs to be completely correct. Instead, we measured how
much effort is required to repair the autoformalized proofs
into proofs that are accepted by Lean.

We manually repaired each incorrectly autoformalized proof
from Elements, attempting to make as few alterations as re-
quired. Using our ground truth proof as a reference point,
we modified invalid tactics that could be repaired (e.g., by
rearranging the order of its arguments), added missing tac-
tics, and removed tactics that could not easily be repaired.
Unnecessary but valid tactics were left unchanged.

GPT-4 GPT-4V
Category 1-shot 5-shot 1-shot 5-shot

Triangle 35% 45% 45% 70%
Similarity 5% 15% 10% 15%
Congruent 5% 25% 15% 25%

Quadrilateral 35% 25% 20% 30%
Parallel 5% 15% 5% 15%

Overall 17% 25% 19% 31%

Table 2. Percentage of successfully autoformalized
proofs from UniGeo. Experiments were conducted
in January 2024 using gpt-4-1106-preview and
gpt-4-1106-vision-preview.

Results. Table 2 shows the results of autoformalizing
proofs from UniGeo proofs. Models with 0-shot prompts are
not included since they failed to autoformalize any proofs.
In general, the performance of the models significantly de-
pends on the type of geometry problems and the number of
few-shot demonstrations. Compared to theorem statements,
we see a more significant improvement in the success rate
when visual inputs are provided for autoformalizing proofs.

When autoformalizing proofs from Elements with 5-shot
prompts, we found that GPT-4 and GPT-4V were both only
able to completely formalize the same two proofs (Proposi-
tions 1 and Proposition 17). That is to say, when combined
with the UniGeo results, GPT-4 formalized correct proofs
at a rate of 18.8% on LeanEuclid, while GPT-4V achieved
a rate of 23.1%. The remaining 41 proofs from Elements
required some degree of repair to be accepted by Lean.

While it is difficult to precisely measure the quality of imper-
fect proofs, we can gain a rough approximation by comput-
ing the Levenshtein ratio between the original and repaired
proofs. Doing so reveals that, for GPT-4, the autoformalized
proofs had a median similarity ratio of 61.7% compared to
their repaired versions, with proofs in the 75th percentile
scoring at least 75.2%. For GPT-4V, the median similarity
ratio was 64.0%, and the proofs in the 75h percentile proofs
scored at least 72.9%. Moreover, we found that many of the
modifications required to repair the proofs are very simple,
such as strengthening a theorem slightly or rearranging tac-
tics arguments; in general, the models are good at choosing
relevant theorems, even if they do not invoke them correctly.
Additional data and examples are in Appendix F.

We believe that these results reflect well on LeanEuclid as
a target language for autoformalizing Euclidean proofs. In
particular, our tactic language and proof automation allow
the model to focus only on explicit reasoning steps in the
input text. This means the resulting proofs are much shorter
than they would be if all reasoning steps were made explicit
(and, as a result, they are easier to repair). Given that these
results were obtained from standalone queries, we expect

8

30 (3) total: 69

LayoutGPT

LayoutGPT: Compositional Visual Planning and
Generation with Large Language Models

Weixi Feng1˚ Wanrong Zhu1˚ Tsu-jui Fu1 Varun Jampani2 Arjun Akula2
Xuehai He3 Sugato Basu2 Xin Eric Wang3 William Yang Wang1

1University of California, Santa Barbara
2Google

3University of California, Santa Cruz
https://github.com/weixi-feng/LayoutGPT

[2D Spatial Reasoning] A carrot and some onion next to
a knife on a cutting board.

[2D Numerical Reasoning] There are three elephants
standing beside a pool of water.

LayoutGPT
+ GLIGEN

StableDiffusion
(v2.1)

Attend-and-
Excite

[3D Living Room] Room Type: Living Room;
 Room Size: 7.7m x 3.6m

LayoutGPTATISS

[3D Bedroom] Room Type: Bedroom;
 Room Size: 3.0m x 4.8m

LayoutGPTATISS

Furnitures
Overlapped

Furnitures
Out-of-Boundary

LayoutGPT
+ GLIGEN

StableDiffusion
(v2.1)

Attend-and-
Excite

Figure 1: Generated layouts from LayoutGPT in 2D images and 3D indoor scenes. LayoutGPT can
serve as a visual planner to reflect challenging numerical and spatial concepts in visual spaces.

Abstract

Attaining a high degree of user controllability in visual generation often requires
intricate, fine-grained inputs like layouts. However, such inputs impose a substan-
tial burden on users when compared to simple text inputs. To address the issue,
we study how Large Language Models (LLMs) can serve as visual planners by
generating layouts from text conditions, and thus collaborate with visual gener-
ative models. We propose LayoutGPT, a method to compose in-context visual
demonstrations in style sheet language to enhance the visual planning skills of
LLMs. LayoutGPT can generate plausible layouts in multiple domains, ranging
from 2D images to 3D indoor scenes. LayoutGPT also shows superior performance
in converting challenging language concepts like numerical and spatial relations to
layout arrangements for faithful text-to-image generation. When combined with
a downstream image generation model, LayoutGPT outperforms text-to-image
models/systems by 20-40% and achieves comparable performance as human users
in designing visual layouts for numerical and spatial correctness. Lastly, Layout-
GPT achieves comparable performance to supervised methods in 3D indoor scene
synthesis, demonstrating its effectiveness and potential in multiple visual domains.

˚equal contribution, correspondence to {weixifeng, wanrongzhu}@cs.ucsb.edu

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

ar
X

iv
:2

30
5.

15
39

3v
2

 [
cs

.C
V

]
 2

8
O

ct
 2

02
3

LayoutGPTLayoutGPT: Compositional Visual Planning and Generation with LLMs, arXiv:2305.15393v2

31 total: 69

图（Graph）作为大语言模型和符号化知识的接口

ERNIE: Enhanced Language Representation with Informative Entities

Zhengyan Zhang1,2,3∗, Xu Han1,2,3∗, Zhiyuan Liu1,2,3†, Xin Jiang4, Maosong Sun1,2,3, Qun Liu4

1Department of Computer Science and Technology, Tsinghua University, Beijing, China
2Institute for Artificial Intelligence, Tsinghua University, Beijing, China

3State Key Lab on Intelligent Technology and Systems, Tsinghua University, Beijing, China
4Huawei Noah’s Ark Lab

{zhangzhengyan14,hanxu17}@mails.tsinghua.edu.cn

Abstract

Neural language representation models such
as BERT pre-trained on large-scale corpora
can well capture rich semantic patterns from
plain text, and be fine-tuned to consistently im-
prove the performance of various NLP tasks.
However, the existing pre-trained language
models rarely consider incorporating knowl-
edge graphs (KGs), which can provide rich
structured knowledge facts for better language
understanding. We argue that informative en-
tities in KGs can enhance language represen-
tation with external knowledge. In this pa-
per, we utilize both large-scale textual cor-
pora and KGs to train an enhanced language
representation model (ERNIE), which can
take full advantage of lexical, syntactic, and
knowledge information simultaneously. The
experimental results have demonstrated that
ERNIE achieves significant improvements on
various knowledge-driven tasks, and mean-
while is comparable with the state-of-the-art
model BERT on other common NLP tasks.
The source code and experiment details of
this paper can be obtained from https://
github.com/thunlp/ERNIE.

1 Introduction

Pre-trained language representation models, in-
cluding feature-based (Mikolov et al., 2013; Pen-
nington et al., 2014; Peters et al., 2017, 2018) and
fine-tuning (Dai and Le, 2015; Howard and Ruder,
2018; Radford et al., 2018; Devlin et al., 2019)
approaches, can capture rich language informa-
tion from text and then benefit many NLP appli-
cations. BERT (Devlin et al., 2019), as one of the
most recently proposed models, obtains the state-
of-the-art results on various NLP applications by
simple fine-tuning, including named entity recog-
nition (Sang and De Meulder, 2003), question

∗ indicates equal contribution
† Corresponding author: Z.Liu(liuzy@tsinghua.edu.cn)

is_ais_a

Song Book
auth

or
composer

Bob Dylan

Chronicles:
Volume OneBlowin’ in the wind

Songwriter Writer

is_ais_a

Bob Dylan wrote Blowin’ in the Wind in 1962, and wrote Chronicles: Volume One in 2004.

Figure 1: An example of incorporating extra
knowledge information for language understand-
ing. The solid lines present the existing knowl-
edge facts. The red dotted lines present the facts
extracted from the sentence in red. The green dot-
dash lines present the facts extracted from the sen-
tence in green.

answering (Rajpurkar et al., 2016; Zellers et al.,
2018), natural language inference (Bowman et al.,
2015), and text classification (Wang et al., 2018).

Although pre-trained language representation
models have achieved promising results and
worked as a routine component in many NLP
tasks, they neglect to incorporate knowledge in-
formation for language understanding. As shown
in Figure 1, without knowing Blowin’ in the Wind
and Chronicles: Volume One are song and book
respectively, it is difficult to recognize the two oc-
cupations of Bob Dylan, i.e., songwriter and
writer, on the entity typing task. Furthermore,
it is nearly impossible to extract the fine-grained
relations, such as composer and author on
the relation classification task. For the existing
pre-trained language representation models, these
two sentences are syntactically ambiguous, like
“UNK wrote UNK in UNK”. Hence, considering
rich knowledge information can lead to better lan-
guage understanding and accordingly benefits var-
ious knowledge-driven applications, e.g. entity
typing and relation classification.

For incorporating external knowledge into lan-
guage representation models, there are two main

ar
X

iv
:1

90
5.

07
12

9v
3

 [
cs

.C
L

]
 4

 J
un

 2
01

9

ERNIE: Enhanced Language Representation with Informative Entities

Zhengyan Zhang1,2,3∗, Xu Han1,2,3∗, Zhiyuan Liu1,2,3†, Xin Jiang4, Maosong Sun1,2,3, Qun Liu4

1Department of Computer Science and Technology, Tsinghua University, Beijing, China
2Institute for Artificial Intelligence, Tsinghua University, Beijing, China

3State Key Lab on Intelligent Technology and Systems, Tsinghua University, Beijing, China
4Huawei Noah’s Ark Lab

{zhangzhengyan14,hanxu17}@mails.tsinghua.edu.cn

Abstract

Neural language representation models such
as BERT pre-trained on large-scale corpora
can well capture rich semantic patterns from
plain text, and be fine-tuned to consistently im-
prove the performance of various NLP tasks.
However, the existing pre-trained language
models rarely consider incorporating knowl-
edge graphs (KGs), which can provide rich
structured knowledge facts for better language
understanding. We argue that informative en-
tities in KGs can enhance language represen-
tation with external knowledge. In this pa-
per, we utilize both large-scale textual cor-
pora and KGs to train an enhanced language
representation model (ERNIE), which can
take full advantage of lexical, syntactic, and
knowledge information simultaneously. The
experimental results have demonstrated that
ERNIE achieves significant improvements on
various knowledge-driven tasks, and mean-
while is comparable with the state-of-the-art
model BERT on other common NLP tasks.
The source code and experiment details of
this paper can be obtained from https://
github.com/thunlp/ERNIE.

1 Introduction

Pre-trained language representation models, in-
cluding feature-based (Mikolov et al., 2013; Pen-
nington et al., 2014; Peters et al., 2017, 2018) and
fine-tuning (Dai and Le, 2015; Howard and Ruder,
2018; Radford et al., 2018; Devlin et al., 2019)
approaches, can capture rich language informa-
tion from text and then benefit many NLP appli-
cations. BERT (Devlin et al., 2019), as one of the
most recently proposed models, obtains the state-
of-the-art results on various NLP applications by
simple fine-tuning, including named entity recog-
nition (Sang and De Meulder, 2003), question

∗ indicates equal contribution
† Corresponding author: Z.Liu(liuzy@tsinghua.edu.cn)

is_ais_a

Song Book
auth

or
composer

Bob Dylan

Chronicles:
Volume OneBlowin’ in the wind

Songwriter Writer

is_ais_a

Bob Dylan wrote Blowin’ in the Wind in 1962, and wrote Chronicles: Volume One in 2004.

Figure 1: An example of incorporating extra
knowledge information for language understand-
ing. The solid lines present the existing knowl-
edge facts. The red dotted lines present the facts
extracted from the sentence in red. The green dot-
dash lines present the facts extracted from the sen-
tence in green.

answering (Rajpurkar et al., 2016; Zellers et al.,
2018), natural language inference (Bowman et al.,
2015), and text classification (Wang et al., 2018).

Although pre-trained language representation
models have achieved promising results and
worked as a routine component in many NLP
tasks, they neglect to incorporate knowledge in-
formation for language understanding. As shown
in Figure 1, without knowing Blowin’ in the Wind
and Chronicles: Volume One are song and book
respectively, it is difficult to recognize the two oc-
cupations of Bob Dylan, i.e., songwriter and
writer, on the entity typing task. Furthermore,
it is nearly impossible to extract the fine-grained
relations, such as composer and author on
the relation classification task. For the existing
pre-trained language representation models, these
two sentences are syntactically ambiguous, like
“UNK wrote UNK in UNK”. Hence, considering
rich knowledge information can lead to better lan-
guage understanding and accordingly benefits var-
ious knowledge-driven applications, e.g. entity
typing and relation classification.

For incorporating external knowledge into lan-
guage representation models, there are two main

ar
X

iv
:1

90
5.

07
12

9v
3

 [
cs

.C
L

]
 4

 J
un

 2
01

9

e
(i�1)
1 e

(i�1)
2

bob dylan wrote

w
(i�1)
1 w

(i�1)
2 w

(i�1)
3 ··· w(i�1)

n

1962

Multi-Head Attention Multi-Head Attention

Information Fusion

w
(i)
1 w

(i)
2

e
(i)
1

w(i)
n

e
(i)
2

w
(i)
3 e

(i)
1 e

(i)
2

ẽ
(i)
1 ẽ

(i)
2

w̃
(i)
1 w̃

(i)
2 w̃

(i)
3 w̃(i)

n

···

···
ẽ
(i)
2

Token Input Entity Input

Token Output Entity Output

Bob Dylan wrote Blowin’ in the Wind in 1962

blow

w
(i�1)
4

w̃
(i)
4

w
(i)
4

Multi-Head
Attention

Feed
Forward

Nx

Multi-Head
Attention

Information
Fusion

Token Input

Multi-Head
Attention

Entity Input

Mx

Token Output Entity Output

Blowin’ in the Wind

ẽ
(i)
1

Bob Dylan

Aggregator

Transformer

Aggregator

(a) Model Achitecture (b) Aggregator

K-Encoder

T-Encoder

Figure 2: The left part is the architecture of ERNIE. The right part is the aggregator for the mutual
integration of the input of tokens and entities. Information fusion layer takes two kinds of input: one is the
token embedding, and the other one is the concatenation of the token embedding and entity embedding.
After information fusion, it outputs new token embeddings and entity embeddings for the next layer.

inference (Chen et al., 2018), knowledge ac-
quisition (Han et al., 2018a), and dialog sys-
tems (Madotto et al., 2018). Hence, we argue that
extra knowledge information can effectively ben-
efit existing pre-training models. In fact, some
work has attempted to joint representation learn-
ing of words and entities for effectively lever-
aging external KGs and achieved promising re-
sults (Wang et al., 2014; Toutanova et al., 2015;
Han et al., 2016; Yamada et al., 2016; Cao et al.,
2017, 2018). Sun et al. (2019) propose the knowl-
edge masking strategy for masked language model
to enhance language representation by knowl-
edge 1. In this paper, we further utilize both cor-
pora and KGs to train an enhanced language rep-
resentation model based on BERT.

3 Methodology

In this section, we present the overall framework
of ERNIE and its detailed implementation, includ-
ing the model architecture in Section 3.2, the novel
pre-training task designed for encoding informa-
tive entities and fusing heterogeneous information
in Section 3.4, and the details of the fine-tuning
procedure in Section 3.5.

1It is a coincidence that both Sun et al. (2019) and we
chose ERNIE as the model names, which follows the inter-
esting naming habits like ELMo and BERT. Sun et al. (2019)
released their code on March 16th and submitted their paper
to Arxiv on April 19th while we submitted our paper to ACL
whose deadline is March 4th.

3.1 Notations

We denote a token sequence as {w1, . . . , wn} 2,
where n is the length of the token sequence.
Meanwhile, we denote the entity sequence align-
ing to the given tokens as {e1, . . . , em}, where m
is the length of the entity sequence. Note that m
is not equal to n in most cases, as not every to-
ken can be aligned to an entity in KGs. Further-
more, we denote the whole vocabulary containing
all tokens as V , and the entity list containing all
entities in KGs as E . If a token w ∈ V has a corre-
sponding entity e ∈ E , their alignment is defined
as f(w) = e. In this paper, we align an entity to
the first token in its named entity phrase, as shown
in Figure 2.

3.2 Model Architecture

As shown in Figure 2, the whole model architec-
ture of ERNIE consists of two stacked modules:
(1) the underlying textual encoder (T-Encoder)
responsible to capture basic lexical and syntac-
tic information from the input tokens, and (2) the
upper knowledgeable encoder (K-Encoder) re-
sponsible to integrate extra token-oriented knowl-
edge information into textual information from the
underlying layer, so that we can represent hetero-
geneous information of tokens and entities into a
united feature space. Besides, we denote the num-
ber of T-Encoder layers as N , and the number

2In this paper, tokens are at the subword level.

Model MNLI-(m/mm) QQP QNLI SST-2
392k 363k 104k 67k

BERTBASE 84.6/83.4 71.2 - 93.5

ERNIE 84.0/83.2 71.2 91.3 93.5

Model CoLA STS-B MRPC RTE
8.5k 5.7k 3.5k 2.5k

BERTBASE 52.1 85.8 88.9 66.4

ERNIE 52.3 83.2 88.2 68.8

Table 6: Results of BERT and ERNIE on different tasks
of GLUE (%).

As FewRel does not have any null instance
where there is not any relation between entities,
we adopt macro averaged metrics to present the
model performances. Since FewRel is built by
checking whether the sentences contain facts in
Wikidata, we drop the related facts in KGs be-
fore pre-training for fair comparison. From Ta-
ble 5, we have two observations: (1) As the train-
ing data does not have enough instances to train
the CNN encoder from scratch, CNN just achieves
an F1 score of 69.35%. However, the pre-training
models including BERT and ERNIE increase the
F1 score by at least 15%. (2) ERNIE achieves an
absolute F1 increase of 3.4% over BERT, which
means fusing external knowledge is very effective.

In TACRED, there are nearly 80% null
instances so that we follow the previous
work (Zhang et al., 2017) to adopt micro
averaged metrics to represent the model per-
formances instead of the macro. The results of
CNN, PA-LSTM, and C-GCN come from the
paper by Zhang et al. (2018), which are the best
results of CNN, RNN, and GCN respectively.
From Table 5, we observe that: (1) The C-GCN
model outperforms the strong BERT model by
an F1 increase of 0.4%, as C-GCN utilizes the
dependency trees and the entity mask strategy.
The entity mask strategy refers to replacing each
subject (and object similarly) entity with a special
NER token, which is similar to our proposed
pre-training task dEA. (2) ERNIE achieves the
best recall and F1 scores, and increases the F1
of BERT by nearly 2.0%, which proves the
effectiveness of the knowledgeable module for
relation classification.

In conclusion, we find that the pre-trained lan-
guage models can provide more information for
relation classification than the vanilla encoder
CNN and RNN. And ERNIE outperforms BERT
on both of the relation classification datasets, es-
pecially on the FewRel which has a much smaller

Model P R F1

BERT 85.05 85.11 84.89

ERNIE 88.49 88.44 88.32
w/o entities 85.89 85.89 85.79
w/o dEA 85.85 85.75 85.62

Table 7: Ablation study on FewRel (%).

training set. It demonstrates extra knowledge
helps the model make full use of small training
data, which is important for most NLP tasks as
large-scale annotated data is unavailable.

4.5 GLUE

The General Language Understanding Evaluation
(GLUE) benchmark (Wang et al., 2018) is a col-
lection of diverse natural language understanding
tasks (Warstadt et al., 2018; Socher et al., 2013;
Dolan and Brockett, 2005; Agirre et al., 2007;
Williams et al., 2018; Rajpurkar et al., 2016; Da-
gan et al., 2006; Levesque et al., 2011), which is
the main benchmark used in Devlin et al. (2019).
To explore whether our knowledgeable module
degenerates the performance on common NLP
tasks, we evaluate ERNIE on 8 datasets of GLUE
and compare it with BERT.

In Table 6, we report the results of our eval-
uation submissions and those of BERT from the
leaderboard. We notice that ERNIE is consistent
with BERTBASE on big datasets like MNLI, QQP,
QNLI, and SST-2. The results become more unsta-
ble on small datasets, that is, ERNIE is better on
CoLA and RTE, but worse on STS-B and MRPC.

In short, ERNIE achieves comparable results
with BERTBASE on GLUE. On the one hand, it
means GLUE does not require external knowledge
for language representation. On the other hand, it
illustrates ERNIE does not lose the textual infor-
mation after heterogeneous information fusion.

4.6 Ablation Study

In this subsection, we explore the effects of the
informative entities and the knowledgeable pre-
training task (dEA) for ERNIE using FewRel
dataset. w/o entities and w/o dEA refer to fine-
tuning ERNIE without entity sequence input and
the pre-training task dEA respectively. As shown
in Table 7, we have the following observations:
(1) Without entity sequence input, dEA still in-
jects knowledge information into language repre-
sentation during pre-training, which increases the
F1 score of BERT by 0.9%. (2) Although the in-
formative entities bring much knowledge informa-

32 (1) total: 69

图（Graph）作为大语言模型和符号化知识的接口

▶ 早期，将预训练语言模型和知识图谱嵌入表示（如TransE）相结合的做法，曾
经引起了较多的关注。

▶ 在大模型时代，这样的研究已经很少见。

▶ 但我认为，这样的研究也许仍然是有价值的，比如对于Reverse Curse问题，
也许是个可行的解决方案。

Published as a conference paper at ICLR 2024

THE REVERSAL CURSE:
LLMS TRAINED ON “A IS B” FAIL TO LEARN “B IS A”

Lukas Berglund
Vanderbilt University

Meg Tong
Independent

Max Kaufmann
UK AI Safety Institute

Mikita Balesni
Apollo Research

Asa Cooper Stickland
New York University

Tomasz Korbak
University of Sussex

Owain Evans∗
University of Oxford

ABSTRACT

We expose a surprising failure of generalization in auto-regressive large language
models (LLMs). If a model is trained on a sentence of the form “A is B”, it will
not automatically generalize to the reverse direction “B is A”. This is the Reversal
Curse. For instance, if a model is trained on “Valentina Tereshkova was the first
woman to travel to space”, it will not automatically be able to answer the question,
“Who was the first woman to travel to space?”. Moreover, the likelihood of the
correct answer (“Valentina Tershkova”) will not be higher than for a random name.
Thus, models do not generalize a prevalent pattern in their training set: if “A is B”
occurs, “B is A” is more likely to occur. It is worth noting, however, that if “A is B”
appears in-context, models can deduce the reverse relationship.

We provide evidence for the Reversal Curse by finetuning GPT-3 and Llama-1
on fictitious statements such as “Uriah Hawthorne is the composer of Abyssal
Melodies” and showing that they fail to correctly answer “Who composed Abyssal
Melodies?”. The Reversal Curse is robust across model sizes and model families
and is not alleviated by data augmentation. We also evaluate ChatGPT (GPT-
3.5 and GPT-4) on questions about real-world celebrities, such as “Who is Tom
Cruise’s mother? [A: Mary Lee Pfeiffer]” and the reverse “Who is Mary Lee
Pfeiffer’s son?”. GPT-4 correctly answers questions like the former 79% of the
time, compared to 33% for the latter.

Code available at: https://github.com/lukasberglund/reversal_
curse.

Figure 1: Inconsistent knowledge in GPT-4. GPT-4 correctly gives the name of Tom Cruise’s
mother (left). Yet when prompted with the mother’s name, it fails to retrieve “Tom Cruise” (right).
We hypothesize this ordering effect is due to the Reversal Curse. Models trained on “A is B” (e.g.
“Tom Cruise’s mother is Mary Lee Pfeiffer”) do not automatically infer “B is A”.

1 INTRODUCTION

If a human learns the fact “Valentina Tereshkova was the first woman to travel to space”, they can
also correctly answer “Who was the first woman to travel to space?”. This is such a basic form
of generalization that it seems trivial. Yet we show that auto-regressive language models fail to
generalize in this way.

∗Corresponding author: owaine@gmail.com

1

ar
X

iv
:2

30
9.

12
28

8v
4

 [
cs

.C
L

]
 2

6
M

ay
 2

02
4

Published as a conference paper at ICLR 2024

THE REVERSAL CURSE:
LLMS TRAINED ON “A IS B” FAIL TO LEARN “B IS A”

Lukas Berglund
Vanderbilt University

Meg Tong
Independent

Max Kaufmann
UK AI Safety Institute

Mikita Balesni
Apollo Research

Asa Cooper Stickland
New York University

Tomasz Korbak
University of Sussex

Owain Evans∗
University of Oxford

ABSTRACT

We expose a surprising failure of generalization in auto-regressive large language
models (LLMs). If a model is trained on a sentence of the form “A is B”, it will
not automatically generalize to the reverse direction “B is A”. This is the Reversal
Curse. For instance, if a model is trained on “Valentina Tereshkova was the first
woman to travel to space”, it will not automatically be able to answer the question,
“Who was the first woman to travel to space?”. Moreover, the likelihood of the
correct answer (“Valentina Tershkova”) will not be higher than for a random name.
Thus, models do not generalize a prevalent pattern in their training set: if “A is B”
occurs, “B is A” is more likely to occur. It is worth noting, however, that if “A is B”
appears in-context, models can deduce the reverse relationship.

We provide evidence for the Reversal Curse by finetuning GPT-3 and Llama-1
on fictitious statements such as “Uriah Hawthorne is the composer of Abyssal
Melodies” and showing that they fail to correctly answer “Who composed Abyssal
Melodies?”. The Reversal Curse is robust across model sizes and model families
and is not alleviated by data augmentation. We also evaluate ChatGPT (GPT-
3.5 and GPT-4) on questions about real-world celebrities, such as “Who is Tom
Cruise’s mother? [A: Mary Lee Pfeiffer]” and the reverse “Who is Mary Lee
Pfeiffer’s son?”. GPT-4 correctly answers questions like the former 79% of the
time, compared to 33% for the latter.

Code available at: https://github.com/lukasberglund/reversal_
curse.

Figure 1: Inconsistent knowledge in GPT-4. GPT-4 correctly gives the name of Tom Cruise’s
mother (left). Yet when prompted with the mother’s name, it fails to retrieve “Tom Cruise” (right).
We hypothesize this ordering effect is due to the Reversal Curse. Models trained on “A is B” (e.g.
“Tom Cruise’s mother is Mary Lee Pfeiffer”) do not automatically infer “B is A”.

1 INTRODUCTION

If a human learns the fact “Valentina Tereshkova was the first woman to travel to space”, they can
also correctly answer “Who was the first woman to travel to space?”. This is such a basic form
of generalization that it seems trivial. Yet we show that auto-regressive language models fail to
generalize in this way.

∗Corresponding author: owaine@gmail.com

1

ar
X

iv
:2

30
9.

12
28

8v
4

 [
cs

.C
L

]
 2

6
M

ay
 2

02
4

32 (2) total: 69

形式语言与神经网络结合的方法

▶ 形式语言主要有两类：程序语言和逻辑语言。

▶ 形式语言都没有歧义，是最精确的符号表示形式。
▶ 形式语言与神经网络的结合都面临两类问题：

▶ 自然语言到形式语言的转换问题：如何自将然语言描述的问题转换成形式语言
（逻辑或程序）：

▶ 这更多是自然语言理解问题
▶ 可以采用XoT方法提高推理准确率
▶ 或者采用数据合成方法构造更多更好的训练数据

▶ 形式语言本身的生成问题：如何生成正确的程序语言：
▶ 由于形式语言自身有明确的语义，因此是可以通过引入外部符号引擎进行验证
▶ 可以采用蒙特卡洛搜索等方法寻找更好的结果

33 total: 69

基于大语言模型的神经符号系统

融合搜索引擎的大语言模型：扩展知识的边界

融合工具和插件调用的大语言模型：借助外部符号工具能力

基于大语言模型的智能体（LLM Agent）：综合性神经符号系统

使用大语言模型增强的逻辑推理系统：实现数学定理证明

Content

Pangu-Tool: 通过有监督微调SFT实现外部工具调用

Huawei Confidential2

4. Our work
1. SFT

• 盘古工具学习

> 通用数据进行SFT，维持基础通用能力

> 代码开发数据SFT，夯实工具调用基础

> 多种工具数据SFT，打造办公生活助手

通用数据（~1000k）
（生成、摘要、对话等）

工具数据（~100k）
（数学、APIs、excel、画画等）

代码开发数据(~200k)
(代码生成、解释、问答等)

盘古基础
语言模型

能调用工具的
盘古语言模型

34 total: 69

Pangu-Tool: 通过上下文学习ICL实现外部工具调用

Huawei Confidential6

4. Our work 工具调用 / function calling

系统：你可以使用如下工具：
[{"name": "plugins|set_winddirection_common", "description": "内部公共意图-设置风向.", "principle":

null, "arguments": {"carcontrol_des_location": "String: ", "device_type": "String: ", "range_type": "String:

", "room_type": "String: ", "smarthome_instancename": "String: ", "time": "String: ", "wind_direction":

"String: "}, "results": "String: 执行结果。"},

{"name": "plugins|close_home_settings_page", "description": "关闭子系统我家.", "principle": null,

"arguments": {"room_type": "String: ", "setting_item": "String: "}, "results": "String: 执行结果。"},

{"name": "plugins|get_medical_treatment", "description": "看病.", "principle": null, "arguments": {},

"results": "String: 执行结果。"},

{"name": "plugins|turn_off_air_swipe_screen", "description": "关闭隔空滑动屏幕.", "principle": null,

"arguments": {}, "results": "String: 执行结果。"},

{"name": "plugins|turn_off_power_saving_mode_common", "description": "关闭节能模式.", "principle":

null, "arguments": {"mode": "String: "}, "results": "String: 执行结果。"}]

用户：帮忙把省电模式功能关了

助手：我需要使用 turn_off_power_saving_mode_common API.
<工具>工具调用:plugins|turn_off_power_saving_mode_common|{\“mode\”: \“省电\”}</工具>

工具：[output_from_turn_off_power_saving_mode_common]

用户可自定义工具列表

我可以跑代码

我可以画画

我可以查天气

工具库

……

或

embedding

embedding

基于用户 query 进行
retrieval 来获取工具列表

盘古语言模型

35 total: 69

Pangu-Tool: 通过思维链CoT实现外部工具调用的自动规划和搜
索

Prompt template library

Or

Prompt generator

Input
Produce Prompt

(Search, generate)

LLM

Prompt

(plan including plug

in,

CoT/ToT/GoT,

Standard)

Infer Step

by Step

Verify

Step by

Step

Verifier

Result

Step by

Step

Score

Modify Prompt

Planner

Finial

Verify

Final

Score

Calculate

step by

step

score

Step by

Step

Score
Modify Verifier

(finial, step by step)

Add to Prompt library

Or

Modify Prompt generator

Agent形式通过调用外部工具解决复杂问题

36 total: 69

Pangu-Tool样例：数学推理

Huawei Confidential2

数学问题

37 (1) total: 69

Pangu-Tool样例：数学推理

▶ 方法步骤：
1. 生成文本代码混杂的结果，其中<code4symbol> tag用来区别其他任务，这
个tag会触发系统调用python解释器；

2. 调用python解释器执行代码，执行成功，计算结果填回文本；
3. 如果执行出错，使用模型生成的缺省结果；
4. 多次执行特性（开发中）：如果执行出错，python将错误信息发送给大模型再次
生成，达到自动修复的目标。

▶ 实验结果：
▶ 加入python解释器，在数学类任务上模型得到了显著提升（35%→86.7%）。

37 (2) total: 69

Pangu-Tool样例：数学推理

Q1: (100+(200/5)-99) / 4

Huawei Confidential13

数学能力 (Pangu-tool)
Q1: (100+(200/5)-99) / 4

Q2: 一个圆锥体，它的底半径是3厘米，高是9厘米，它的体积是多少？Q2: 一个圆锥体，它的底半径是3厘米，高是9厘米，它的体积是多少？

Huawei Confidential13

数学能力 (Pangu-tool)
Q1: (100+(200/5)-99) / 4

Q2: 一个圆锥体，它的底半径是3厘米，高是9厘米，它的体积是多少？

38 (1) total: 69

Pangu-Tool样例：数学推理

Q3:小红买了20.5米的布，做衣服用了10.5米，请问还剩下多少厘米的布？

Huawei Confidential15

数学能力 (Pangu-tool)

Q3:小红买了20.5米的布，做衣服用了10.5米，请问还剩下多少厘米的布？

Q4: 小胡每小时走10公里，小红每小时走5公里，小红在前，小胡在后，
两人相距20公里，同时出发，请问小胡多长时间能追上小红？

Q4: 小胡每小时走10公里，小红每小时走5公里，小红在前，小胡在后，两人相
距20公里，同时出发，请问小胡多长时间能追上小红？

Huawei Confidential15

数学能力 (Pangu-tool)

Q3:小红买了20.5米的布，做衣服用了10.5米，请问还剩下多少厘米的布？

Q4: 小胡每小时走10公里，小红每小时走5公里，小红在前，小胡在后，
两人相距20公里，同时出发，请问小胡多长时间能追上小红？

38 (2) total: 69

Pangu-Tool样例：数学推理

Q5:有5筐苹果的重量相等，如果从每筐中取出10kg，那么剩下的苹果相当于原
来3筐的重量，原来每筐苹果重多少千克？

Huawei Confidential17

Q5:有5筐苹果的重量相等，如果从每筐中取出10kg，那么剩下的苹
果相当于原来3筐的重量，原来每筐苹果重多少千克？

Q6:二十加五的和乘四除以十等于
Q6:二十加五的和乘四除以十等于

Huawei Confidential17

Q5:有5筐苹果的重量相等，如果从每筐中取出10kg，那么剩下的苹
果相当于原来3筐的重量，原来每筐苹果重多少千克？

Q6:二十加五的和乘四除以十等于

38 (3) total: 69

Pangu-Tool样例：表格处理

Huawei Confidential5

4. Our work
1. SFT
盘古-ChatExcel

表格增删改查复杂操作 数据集多元透视分析

查找

删除

添加

修改 数据分析要求

• 基于盘古语言模型代码能力生成pandas代码完成表格操作 • 生成代码借助matplotlib/seaborn等工具进行数据分析

39 total: 69

Pangu-Tool样例：表格处理

Huawei Confidential13

Case: ChatExcel

第一步：上传表格 第二步：表格分析：年龄分布图

40 total: 69

Pangu-Tool样例：日历查询

Huawei Confidential14

Case：日历

2023年1月1日已经过去多少天了？

41 total: 69

Pangu-Tool样例：图片生成

Huawei Confidential15

Case：作画

请画一张清明上河图风格的图片

42 total: 69

Pangu-Tool样例：数学推理中的多轮工具调用

Huawei Confidential8

Case：数学推理中的工具多轮调用

第一步：精确算出火车时间。

第二步：精确算出飞机时间。

第三步：精确算出飞机比火车节省的时间。

北京到深圳总共2032公里，火车的速度是212公里每小时，飞机的速度是650公里每小时，
请问哪个快？快的比慢的节省多少时间？

43 total: 69

Pangu-Tool样例：基于工具反馈的自我修复

Huawei Confidential9

Case: 基于工具反馈的自我修复能力

2/(√7+√5)

44 total: 69

Pangu-Tool样例：基于工具反馈的例外处理

Huawei Confidential10

Case: 基于工具反馈的自我修复能力

2023年2月30日是星期几？

45 total: 69

Pangu-Tool样例：模型知识与工具调用结合

Huawei Confidential11

Case: 知识和工具计算结合

第一步：模型得到亚洲面积。

第二步：调用工具得到结果。

非洲总面积月3020万平方千米，是全球仅次于亚洲的面积第二大洲，它和亚洲面积相差多少？

46 total: 69

Pangu-Tool样例：模型知识与工具调用结合

Huawei Confidential12

Case: 知识和工具计算结合

问题：100以内的质数之和是多少？

47 total: 69

基于大语言模型的神经符号系统

融合搜索引擎的大语言模型：扩展知识的边界

融合工具和插件调用的大语言模型：借助外部符号工具能力

基于大语言模型的智能体（LLM Agent）：综合性神经符号系统

使用大语言模型增强的逻辑推理系统：实现数学定理证明

Content

大模型智能体（LLM Agent）：一个完整的神经符号系统

▶ 大模型智能体（LLM Agent）是一个相对完整的神经符号系统：检索外部知识、调用
外部工具、记忆、规划、探索、决策等等。

https://lilianweng.github.io/posts/2023-06-23-agent/

48 total: 69

LLM-driven AI agents
A Survey on Large Language Model Based Autonomous Agents. arXiv.2308.11432.

Ø Demographic Information

Ø Personality Information

Ø Social Information

Ø Handcrafting Method

Ø LLM-Generation Method

Ø Dataset Alignment Method

Profile ActionMemory Planning

Ø Task Completion
Ø Communication

Ø Memory Reading
Ø Memory Writing
Ø Memory Reflection

Ø Unified Memory
Ø Hybrid Memory

Ø Languages
Ø Embeddings

Ø Environment Feedback
Ø Human Feedback
Ø Model Feedback

Ø Single-path Reasoning
Ø Multi-path Reasoning
Ø External Planner

Generation Strategy

Profile Contents

Memory Operation

Memory Structure

Memory Formats

Planning w/o Feedback

Planning w/ Feedback

Action Target

Action Production

Action Impact
Ø Tools

Ø Databases
Ø Lists

Ø Self-Knowledge

Ø Exploration

Ø Memory Recollection

Ø Environments
Ø Internal States

Action Space
Ø Plan Following

Ø New Actions

Figure 2: A unified framework for the architecture design of LLM-based autonomous agent.

LLM-generation Method: in this method, agent profiles are automatically generated based on
LLMs. Typically, it begins by indicating the profile generation rules, elucidating the composition and
attributes of the agent profiles within the target population. Then, one can optionally specify several
seed agent profiles to serve as few-shot examples. At last, LLMs are leveraged to generate all the
agent profiles. For example, RecAgent [150] first creates seed profiles for a few number of agents
by manually crafting their backgrounds like age, gender, personal traits, and movie preferences.
Then, it leverages ChatGPT to generate more agent profiles based on the seed information. The
LLM-generation method can save significant time when the number of agents is large, but it may
lack precise control over the generated profiles.

Dataset Alignment Method: in this method, the agent profiles are obtained from real-world datasets.
Typically, one can first organize the information about real humans in the datasets into natural
language prompts, and then leverage it to profile the agents. For instance, in [5], the authors assign
roles to GPT-3 based on the demographic backgrounds (such as race/ethnicity, gender, age, and state
of residence) of participants in the American National Election Studies (ANES). They subsequently
investigate whether GPT-3 can produce similar results to those of real humans. The dataset alignment
method accurately captures the attributes of the real population, thereby making the agent behaviors
more meaningful and reflective of real-world scenarios.
Remark. While most of the previous work leverage the above profile generation strategies indepen-
dently, we argue that combining them may yield additional benefits. For example, in order to predict
social developments via agent simulation, one can leverage real-world datasets to profile a subset of
the agents, thereby accurately reflecting the current social status. Subsequently, roles that do not exist
in the real world but may emerge in the future can be manually assigned to the other agents, enabling
the prediction of future social development. The profile module serves as the foundation for agent
design, exerting significant influence on the agent memorization, planning, and action procedures.

2.1.2 Memory Module

The memory module plays a very important role in the agent architecture design. It stores information
perceived from the environment and leverages the recorded memories to facilitate future actions. The
memory module can help the agent to accumulate experiences, self-evolve, and behave in a more
consistent, reasonable, and effective manner. This section provides a comprehensive overview of the
memory module, focusing on its structures, formats, and operations.

Memory Structures: LLM-based autonomous agents usually incorporate principles and mechanisms
derived from cognitive science research on human memory processes. Human memory follows a
general progression from sensory memory that registers perceptual inputs, to short-term memory that
maintains information transiently, to long-term memory that consolidates information over extended
periods. When designing the agent memory structures, researchers take inspiration from these aspects
of human memory. In specific, short-term memory is analogous to the input information within

4

Difference between AI agents and common AI applications:
▶ Agents are able to perceive the environment and make decisions.
▶ Agents can influence and change the environment through their

behavior.
▶ Agents can perceive the changes of the environments caused by

their own behaviour, which form a close loop.
▶ The learning of the decision-making mechanism of agents usually

involve reinforcement learning.

Differences between LLM-driven agents and traditional AI agents:
▶ The states of LLM Agent are represented not only with vectors, but

also in languages, which is interpretable.
▶ The behavior of LLM agents can be represented as any complex

symbolic operation such as function calls.
▶ The LLM Agent’s decision is supported by a strong LLM.

49 total: 69

Summarization and accumulation of experience: Voyager

Mine Wood Log

Make Crafting Table

Craft Stone Sword

Craft Shield

Make Furnace

Cook Steak

Combat Zombie Mine Wood Log

Make Crafting Table

Combat

Zombie

Mine Diamond

New

Task

Code as
Actions

Refine ProgramEnv Feedback

Execution Errors

Update

Exploration

Progress

Skill

Retrieval

Add New Skill

Automatic Curriculum Iterative Prompting Mechanism Skill Library

Environment Self-Verification

Figure 2: VOYAGER consists of three key components: an automatic curriculum for open-ended
exploration, a skill library for increasingly complex behaviors, and an iterative prompting mechanism
that uses code as action space.

1 Introduction

Building generally capable embodied agents that continuously explore, plan, and develop new skills
in open-ended worlds is a grand challenge for the AI community [1–5]. Classical approaches
employ reinforcement learning (RL) [6, 7] and imitation learning [8–10] that operate on primitive
actions, which could be challenging for systematic exploration [11–15], interpretability [16–18], and
generalization [19–21]. Recent advances in large language model (LLM) based agents harness the
world knowledge encapsulated in pre-trained LLMs to generate consistent action plans or executable
policies [16, 22, 19]. They are applied to embodied tasks like games and robotics [23–27], as well as
NLP tasks without embodiment [28–30]. However, these agents are not lifelong learners that can
progressively acquire, update, accumulate, and transfer knowledge over extended time spans [31, 32].

Let us consider Minecraft as an example. Unlike most other games studied in AI [33, 34, 10],
Minecraft does not impose a predefined end goal or a fixed storyline but rather provides a unique
playground with endless possibilities [23]. Minecraft requires players to explore vast, procedurally
generated 3D terrains and unlock a tech tree using gathered resources. Human players typically start
by learning the basics, such as mining wood and cooking food, before advancing to more complex
tasks like combating monsters and crafting diamond tools. We argue that an effective lifelong learning
agent should have similar capabilities as human players: (1) propose suitable tasks based on its
current skill level and world state, e.g., learn to harvest sand and cactus before iron if it finds itself in
a desert rather than a forest; (2) refine skills based on environmental feedback and commit mastered
skills to memory for future reuse in similar situations (e.g. fighting zombies is similar to fighting
spiders); (3) continually explore the world and seek out new tasks in a self-driven manner.

Towards these goals, we introduce VOYAGER, the first LLM-powered embodied lifelong learning
agent to drive exploration, master a wide range of skills, and make new discoveries continually
without human intervention in Minecraft. VOYAGER is made possible through three key modules
(Fig. 2): 1) an automatic curriculum that maximizes exploration; 2) a skill library for storing
and retrieving complex behaviors; and 3) a new iterative prompting mechanism that generates
executable code for embodied control. We opt to use code as the action space instead of low-level
motor commands because programs can naturally represent temporally extended and compositional
actions [16, 22], which are essential for many long-horizon tasks in Minecraft. VOYAGER interacts
with a blackbox LLM (GPT-4 [35]) through prompting and in-context learning [36–38]. Our approach
bypasses the need for model parameter access and explicit gradient-based training or finetuning.

More specifically, VOYAGER attempts to solve progressively harder tasks proposed by the automatic
curriculum, which takes into account the exploration progress and the agent’s state. The curriculum
is generated by GPT-4 based on the overarching goal of “discovering as many diverse things as
possible”. This approach can be perceived as an in-context form of novelty search [39, 40]. VOYAGER
incrementally builds a skill library by storing the action programs that help solve a task successfully.

2

VOYAGER: An Open-Ended Embodied Agent
with Large Language Models

Guanzhi Wang1 2#, Yuqi Xie3, Yunfan Jiang4∗, Ajay Mandlekar1∗,
Chaowei Xiao1 5, Yuke Zhu1 3, Linxi “Jim” Fan1†#, Anima Anandkumar1 2†

1NVIDIA, 2Caltech, 3UT Austin, 4Stanford, 5UW Madison
∗Equal contribution †Equal advising # Corresponding authors

https://voyager.minedojo.org

Abstract

We introduce VOYAGER, the first LLM-powered embodied lifelong learning agent
in Minecraft that continuously explores the world, acquires diverse skills, and
makes novel discoveries without human intervention. VOYAGER consists of three
key components: 1) an automatic curriculum that maximizes exploration, 2) an
ever-growing skill library of executable code for storing and retrieving complex
behaviors, and 3) a new iterative prompting mechanism that incorporates environ-
ment feedback, execution errors, and self-verification for program improvement.
VOYAGER interacts with GPT-4 via blackbox queries, which bypasses the need for
model parameter fine-tuning. The skills developed by VOYAGER are temporally
extended, interpretable, and compositional, which compounds the agent’s abilities
rapidly and alleviates catastrophic forgetting. Empirically, VOYAGER shows
strong in-context lifelong learning capability and exhibits exceptional proficiency
in playing Minecraft. It obtains 3.3× more unique items, travels 2.3× longer
distances, and unlocks key tech tree milestones up to 15.3× faster than prior SOTA.
VOYAGER is able to utilize the learned skill library in a new Minecraft world to
solve novel tasks from scratch, while other techniques struggle to generalize.

Figure 1: VOYAGER discovers new Minecraft items and skills continually by self-driven exploration,
significantly outperforming the baselines. X-axis denotes the number of prompting iterations.

1
ar

X
iv

:2
30

5.
16

29
1v

2
 [

cs
.A

I]
 1

9
O

ct
 2

02
3

Wang, et al. “Voyager: An Open-Ended Embodied Agent with Large Language Models.” arXiv.2305.16291.

50 total: 69

Emergent social behavior from multi-agent interaction: Smallville

Generative Agents: Interactive Simulacra of Human Behavior
Joon Sung Park
Stanford University

Stanford, USA
joonspk@stanford.edu

Joseph C. O’Brien
Stanford University

Stanford, USA
jobrien3@stanford.edu

Carrie J. Cai
Google Research

Mountain View, CA, USA
cjcai@google.com

Meredith Ringel Morris
Google DeepMind
Seattle, WA, USA

merrie@google.com

Percy Liang
Stanford University

Stanford, USA
pliang@cs.stanford.edu

Michael S. Bernstein
Stanford University

Stanford, USA
msb@cs.stanford.edu

Figure 1: Generative agents are believable simulacra of humanbehavior for interactive applications. In thiswork,we demonstrate
generative agents by populating a sandbox environment, reminiscent of The Sims, with twenty-five agents. Users can observe
and intervene as agents plan their days, share news, form relationships, and coordinate group activities.

ABSTRACT
Believable proxies of human behavior can empower interactive
applications ranging from immersive environments to rehearsal
spaces for interpersonal communication to prototyping tools. In
this paper, we introduce generative agents: computational software
agents that simulate believable human behavior. Generative agents
wake up, cook breakfast, and head to work; artists paint, while

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
UIST ’23, October 29-November 1, 2023, San Francisco, CA, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0132-0/23/10.
https://doi.org/10.1145/3586183.3606763

authors write; they form opinions, notice each other, and initiate
conversations; they remember and reflect on days past as they plan
the next day. To enable generative agents, we describe an architec-
ture that extends a large language model to store a complete record
of the agent’s experiences using natural language, synthesize those
memories over time into higher-level reflections, and retrieve them
dynamically to plan behavior. We instantiate generative agents
to populate an interactive sandbox environment inspired by The
Sims, where end users can interact with a small town of twenty-five
agents using natural language. In an evaluation, these generative
agents produce believable individual and emergent social behav-
iors. For example, starting with only a single user-specified notion
that one agent wants to throw a Valentine’s Day party, the agents
autonomously spread invitations to the party over the next two

ar
X

iv
:2

30
4.

03
44

2v
2

 [
cs

.H
C

]
 6

 A
ug

 2
02

3

Generative Agents UIST ’23, October 29-November 1, 2023, San Francisco, CA, USA

Figure 6: The memory stream comprises a large number of observations that are relevant and irrelevant to the agent’s current
situation. Retrieval identifies a subset of these observations that should be passed to the language model to condition its
response to the situation.

In our context, we focus on three main components that, together,
produce effective results.

Recency assigns a higher score to memory objects that were re-
cently accessed, so that events from a moment ago or this morning
are likely to remain in the agent’s attentional sphere. In our im-
plementation, we treat recency as an exponential decay function
over the number of sandbox game hours since the memory was
last retrieved. Our decay factor is 0.995.

Importance distinguishes mundane from core memories by as-
signing a higher score to memory objects that the agent believes to
be important. For instance, a mundane event, such as eating break-
fast in one’s room, would yield a low importance score, whereas
a breakup with one’s significant other would yield a high score.
There are many possible implementations of an importance score;
we find that directly asking the language model to output an integer
score is effective. The full prompt appears below:

On the scale of 1 to 10, where 1 is purely mundane

(e.g., brushing teeth, making bed) and 10 is

extremely poignant (e.g., a break up, college

acceptance), rate the likely poignancy of the

following piece of memory.

Memory: buying groceries at The Willows Market

and Pharmacy

Rating: <fill in>

This prompt returns an integer value of 2 for “cleaning up the room”
and 8 for “asking your crush out on a date.” The importance score
is generated at the time the memory object is created.

Relevance assigns a higher score to memory objects that are
related to the current situation. What is relevant depends on the
answer to, “Relevant to what?”, so we condition relevance on a

query memory. If the query, for example, is that a student is dis-
cussing what to study for a chemistry test with a classmate, memory
objects about their breakfast should have low relevance, whereas
memory objects about the teacher and schoolwork should have
high relevance. In our implementation, we use the language model
to generate an embedding vector of the text description of each
memory. Then, we calculate relevance as the cosine similarity be-
tween the memory’s embedding vector and the query memory’s
embedding vector.

To calculate the final retrieval score, we normalize the recency,
relevance, and importance scores to the range of [0, 1] using min-
max scaling. The retrieval function scores all memories as aweighted
combination of the three elements: 𝑠𝑐𝑜𝑟𝑒 = 𝛼𝑟𝑒𝑐𝑒𝑛𝑐𝑦 · 𝑟𝑒𝑐𝑒𝑛𝑐𝑦 +
𝛼𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 · 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 +𝛼𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒 · 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒 . In our implemen-
tation, all 𝛼s are set to 1. The top-ranked memories that fit within
the language model’s context window are included in the prompt.

4.2 Reflection
Challenge: Generative agents, when equipped with only raw ob-
servational memory, struggle to generalize or make inferences.
Consider a scenario in which Klaus Mueller is asked by the user:
“If you had to choose one person of those you know to spend an
hour with, who would it be?" With access to only observational
memory, the agent simply chooses the person with whom Klaus
has had the most frequent interactions: Wolfgang, his college dorm
neighbor. Unfortunately, Wolfgang and Klaus only ever see each
other in passing, and do not have deep interactions. A more desir-
able response requires that the agent generalize from memories of
Klaus spending hours on a research project to generate a higher-
level reflection that Klaus is passionate about research, and likewise

UIST ’23, October 29-November 1, 2023, San Francisco, CA, USA J.S. Park, J.C. O’Brien, C.J. Cai, M.R. Morris, P. Liang, M.S. Bernstein

Figure 5: Our generative agent architecture. Agents perceive their environment, and all perceptions are saved in a comprehensive
record of the agent’s experiences called the memory stream. Based on their perceptions, the architecture retrieves relevant
memories and uses those retrieved actions to determine an action. These retrieved memories are also used to form longer-term
plans and create higher-level reflections, both of which are entered into the memory stream for future use.

4 GENERATIVE AGENT ARCHITECTURE
Generative agents aim to provide a framework for behavior in an
open world: one that can engage in interactions with other agents
and react to changes in the environment. Generative agents take
their current environment and past experiences as input and gener-
ate behavior as output. Underlying this behavior is a novel agent ar-
chitecture that combines a large language model with mechanisms
for synthesizing and retrieving relevant information to condition
the language model’s output. Without these mechanisms, large
language models can output behavior, but the resulting agents may
not react based on the agent’s past experiences, may not make
important inferences, and may not maintain long-term coherence.
Challenges with long-term planning and coherence remain [19]
even with today’s most performant models such as GPT-4. Because
generative agents produce large streams of events and memories
that must be retained, a core challenge of our architecture is to
ensure that the most relevant pieces of the agent’s memory are
retrieved and synthesized when needed.

At the center of our architecture is the memory stream, a data-
base that maintains a comprehensive record of an agent’s experi-
ence. From the memory stream, records are retrieved as relevant to
plan the agent’s actions and react appropriately to the environment.
Records are recursively synthesized into higher- and higher-level
reflections that guide behavior. Everything in the architecture is
recorded and reasoned over as a natural language description, al-
lowing the architecture to leverage a large language model.

Our current implementation utilizes the gpt3.5-turbo version of
ChatGPT [77]. We expect that the architectural basics of genera-
tive agents—memory, planning, and reflection—will likely remain
the same as language models improve. Newer language models
(e.g., GPT-4) will continue to expand the expressive power and
performance of the prompts that underpin generative agents. As of
writing, however, GPT-4’s API was invitation-only, so our agents
use ChatGPT.

4.1 Memory and Retrieval
Challenge: Creating generative agents that can simulate human
behavior requires reasoning about a set of experiences that is far
larger than what should be described in a prompt, as the full mem-
ory stream can distract the model and does not even currently fit
into the limited context window. Consider the Isabella agent an-
swering the question, “What are you passionate about these days?”
Summarizing all of Isabella’s experiences to fit in the limited con-
text window of the language model produces an uninformative
response, where Isabella discusses topics such as collaborations for
events and projects and cleanliness and organization in a cafe. In-
stead of summarizing, the memory stream described below surfaces
relevant memories, resulting in a more informative and specific
response that mentions Isabella’s passion for making people feel
welcome and included, planning events and creating an atmosphere
that people can enjoy, such as the Valentine’s Day party.

Approach: The memory stream maintains a comprehensive record
of the agent’s experience. It is a list of memory objects, where each
object contains a natural language description, a creation times-
tamp, and a most recent access timestamp. The most basic element
of the memory stream is an observation, which is an event directly
perceived by an agent. Common observations include behaviors
performed by the agent themselves or behaviors that agents per-
ceive being performed by other agents or non-agent objects. For
instance, Isabella Rodriguez, who works at a coffee shop, might
accrue the following observations over time: (1) Isabella Rodriguez
is setting out the pastries, (2) Maria Lopez is studying for a Chem-
istry test while drinking coffee, (3) Isabella Rodriguez and Maria
Lopez are conversing about planning a Valentine’s day party at
Hobbs Cafe, (4) The refrigerator is empty.

Our architecture implements a retrieval function that takes the
agent’s current situation as input and returns a subset of the mem-
ory stream to pass on to the language model. There are many pos-
sible implementations of a retrieval function, depending on what
is important for the agent to consider when deciding how to act.

▶ Introduce time-based passive memory.
▶ Decisions are made by LLMs according to memory, without purposes.
▶ Social behavior emergents among multi-agents.

▶ Potential future development of multi-agent:
▶ Can division of labor and cooperative behavior emergent

among multple agents, rather than relying on pre-specified
human design?

▶ Can ever more powerful intelligent behaviour emergents
through collaborations between multi-agents?

Park, et al. “Generative Agents: Interactive Simulacra of Human Behavior.” arXiv.2304.03442.
51 total: 69

大模型智能体（LLM Agent）还有很长路要走

▶ 但智能体在神经符号结合方面，还比较松散，跟人类水平的神经符号系统相比
但，还有很长路要走：
▶ 符号系统和神经系统是脱节的，神经系统内部对符号来说完全是黑箱，缺乏可解
释性和可操控性

▶ 人类脱离了语言也能思考，而大语言模型离开了语言就无法思考

▶ 外部符号系统（检索、工具）等等，还只是大模型的零碎的附属品，只是作为大
模型能力的延伸，没有能成为一个完整的子系统，支持整个AI系统的能力上升一
个台阶

▶ 符号系统没有提供足够的真实世界信息支持，帮助大模型减少以至于消灭绝大部
分幻觉

▶ Agent系统缺乏自我感知，很难准确判断什么时候应该使用符号系统，什么时候
应该使用大模型本身的能力（系统一和系统二不能无缝地自如切换）

▶ Agent中的符号系统本身的学习和进化、多Agent合作和自主演化，还需要深入探
索。

52 total: 69

基于大语言模型的神经符号系统

融合搜索引擎的大语言模型：扩展知识的边界

融合工具和插件调用的大语言模型：借助外部符号工具能力

基于大语言模型的智能体（LLM Agent）：综合性神经符号系统

使用大语言模型增强的逻辑推理系统：实现数学定理证明

Content

The Curry-Howard Isomorphism科里-霍华德同构

▶ 柯里-霍华德对应（英语：Curry-Howard correspondence）是在计算机程序和
数学证明之间的紧密联系；这种对应也叫做柯里-霍华德同构、公式为类型对应
或命题为类型对应。

▶ 这是对形式逻辑系统和公式计算（computational calculus）之间符号的相似性
的推广。

▶ 它被认为是由美国数学家哈斯凯尔·布鲁克·柯里（Haskell Brooks Curry）和逻
辑学家威廉·阿尔文·霍华德William Alvin Howard）独立发现的。

▶ 有多种方式考虑柯里-霍华德对应。
▶ 在一个方向上，它工作于“把证明编译为程序”级别上。这里的“证明”最初
被限定为在构造性逻辑中—典型的是直觉逻辑系统中的证明。而“程序”是在
常规的函数式编程的意义上的；从语法的观点上看，这种程序是用某种セ演算
表达的。所以柯里-霍华德同构的具体实现是详细研究如何把来自直觉逻辑的证
明写成セ项。

53 (1) total: 69

The Curry-Howard Isomorphism科里-霍华德同构

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Through the looking glass

The mathematician

Theorem. For all n ∈ N, there exists
p ∈ N such that n = 2p or n = 2p + 1.

Proof. By induction on n.
If n = 0 then this is obvious.
Otherwise, assume that
n = m + 1. By the induction
hypothesis, we know that there
exists some p such that m = 2p
or m = 2p + 1.

In the first case, n = 2p + 1.
Otherwise n = 2(p + 1).

The programmer

val div2 : int -> int * bool
(* [div2 n] returns the integer
division by 2 of [n] together with
a boolean indicating if [n] is
even. *)

let rec div2 n = match n with
| 0 -> (0, true)
| m + 1 ->

let (p, even) = div2 m in
if even then (p, false)
else (p + 1, true)

Pierre-Marie Pédrot (PPS/πr2) The Curry-Howard isomorphism 17/02/2015 5 / 20

Slides: Pierre-Marie Pédrot, The Curry-Howard isomorphism for Dummies

53 (2) total: 69

The Curry-Howard Isomorphism科里-霍华德同构

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

A Rosetta’s Stone

Logic CS
Proofs Programs

Formula Types
A implies B function from A to B

A and B pair of A and B
A or B tagged union of A and B
falsity empty type
truth singleton type

for all x ∈ A, B(x) dependent product from A to B
Axiom System primitive

Soundness theorem Compiler
Completeness theorem Debugger

Incompleteness theorem Infinite loop

Pierre-Marie Pédrot (PPS/πr2) The Curry-Howard isomorphism 17/02/2015 8 / 20Slides: Pierre-Marie Pédrot, The Curry-Howard isomorphism for Dummies
53 (3) total: 69

Lean语言

▶ Lean是一款在包含归纳类型的构造演算基础上所开发的计算机定理证明辅助工
具和函数式编程语言。

▶ Lean语言既是一种函数式编程语言，
▶ Lean语言又是一种形式化数学定理证明工具，用Lean语言写的数学定理证明
可以保证其正确性。

▶ 包括陶哲轩在内的一些数学家计划将现有的大部分数学定理证明都用Lean语言
表示出来，目前已经有了一个初步的定理证明库MathLib

▶ Lean语言也成为了基于AI进行数学定理证明的有效工具

54 total: 69

Theorem Proving - Holy Grail of AI
Theorem Proving - Holy Grail of AI

• Very general and most challenging form of intelligence

• Special cases: SAT, SMT, first-order logic, math word problems

• Applications:
• Formal verification => 100% correct code with theoretical guarantee

• Code generation => assist/replace coders (and with 100% correctness)

• AI for Math => education, solve open problems, create new algorithms

Hilbert Turing Shannon

...

Sutskever Lample

Credit to Zhengying Liu at Huawei Noah’s Ark Lab

55 total: 69

Automated Theorem Proving (ATP) - the Problem
Automated Theorem Proving (ATP) - the Problem

∀𝑎, 𝑏, 𝑐 ∈ ℝ, 𝑎 + 𝑏 + 𝑐 = 𝑐 + 𝑏 + 𝑎

a proposition

（and a library of proven theorems）

Credit to Zhengying Liu at Huawei Noah’s Ark Lab

56 (1) total: 69

Automated Theorem Proving (ATP) - the Problem
Automated Theorem Proving (ATP) - the Problem

∀𝑎, 𝑏, 𝑐 ∈ ℝ, 𝑎 + 𝑏 + 𝑐 = 𝑐 + 𝑏 + 𝑎

a proposition

（and a library of proven theorems）

AI

Credit to Zhengying Liu at Huawei Noah’s Ark Lab

56 (2) total: 69

Automated Theorem Proving (ATP) - the Problem
Automated Theorem Proving (ATP) - the Problem

∀𝑎, 𝑏, 𝑐 ∈ ℝ, 𝑎 + 𝑏 + 𝑐 = 𝑐 + 𝑏 + 𝑎

a proposition

（and a library of proven theorems）

AI

its proof

State:
⊢ a + b + c = c + b + a

⊢ a + b + c = b + c + a

⊢ a + b + c = a + (b + c)

goals accomplished 🎉

Action:

1. Use add_comm on c and b

2. Use add_comm on (b + c) and a

3. This is exactly add_assoc

Credit to Zhengying Liu at Huawei Noah’s Ark Lab

56 (3) total: 69

Automated Theorem Proving (ATP) - the Problem
Automated Theorem Proving (ATP) - the Problem

∀𝑎, 𝑏, 𝑐 ∈ ℝ, 𝑎 + 𝑏 + 𝑐 = 𝑐 + 𝑏 + 𝑎

a proposition

（and a library of proven theorems）

(undecidable in most cases, by Gödel Incompleteness Theorem. But it suffices to achieve human performance.)

AI

its proof

State:
⊢ a + b + c = c + b + a

⊢ a + b + c = b + c + a

⊢ a + b + c = a + (b + c)

goals accomplished 🎉

Action:

1. Use add_comm on c and b

2. Use add_comm on (b + c) and a

3. This is exactly add_assoc

Credit to Zhengying Liu at Huawei Noah’s Ark Lab

56 (4) total: 69

Automated Theorem Proving (ATP) - the Problem
Automated Theorem Proving (ATP) - the Problem

∀𝑎, 𝑏, 𝑐 ∈ ℝ, 𝑎 + 𝑏 + 𝑐 = 𝑐 + 𝑏 + 𝑎

a proposition

（and a library of proven theorems）

(undecidable in most cases, by Gödel Incompleteness Theorem. But it suffices to achieve human performance.)

AI

But in what “language”?

its proof

State:
⊢ a + b + c = c + b + a

⊢ a + b + c = b + c + a

⊢ a + b + c = a + (b + c)

goals accomplished 🎉

Action:

1. Use add_comm on c and b

2. Use add_comm on (b + c) and a

3. This is exactly add_assoc

Credit to Zhengying Liu at Huawei Noah’s Ark Lab

56 (5) total: 69

Automated Theorem Proving (ATP) - the Problem
Automated Theorem Proving (ATP) - the Problem

∀𝑎, 𝑏, 𝑐 ∈ ℝ, 𝑎 + 𝑏 + 𝑐 = 𝑐 + 𝑏 + 𝑎

a proposition

（and a library of proven theorems）

(undecidable in most cases, by Gödel Incompleteness Theorem. But it suffices to achieve human performance.)

AI

But in what “language”?

its proof

State:
⊢ a + b + c = c + b + a

⊢ a + b + c = b + c + a

⊢ a + b + c = a + (b + c)

goals accomplished 🎉

Action:

1. Use add_comm on c and b

2. Use add_comm on (b + c) and a

3. This is exactly add_assoc

We use: Lean theorem prover

Credit to Zhengying Liu at Huawei Noah’s Ark Lab

56 (6) total: 69

Interaction between the prover (Lean) and the language modelInteraction between the prover and Lean

[1] Polu, S. et al. Formal Mathematics Statement Curriculum Learning. 2022.

lean-gym [1] provides a theorem proving environment

lean-gym
language model

Credit to Zhengying Liu at Huawei Noah’s Ark Lab

57 (1) total: 69

Interaction between the prover (Lean) and the language modelInteraction between the prover and Lean

[1] Polu, S. et al. Formal Mathematics Statement Curriculum Learning. 2022.

lean-gym [1] provides a theorem proving environment

lean-gym

init_search:

add_abc real
(theorem name, namespaces) language model

Credit to Zhengying Liu at Huawei Noah’s Ark Lab

57 (2) total: 69

Interaction between the prover (Lean) and the language modelInteraction between the prover and Lean

[1] Polu, S. et al. Formal Mathematics Statement Curriculum Learning. 2022.

lean-gym [1] provides a theorem proving environment

lean-gym

⊢ a + b + c = c + b + a
(initial tactic state)

init_search:

add_abc real
(theorem name, namespaces) language model

Credit to Zhengying Liu at Huawei Noah’s Ark Lab

57 (3) total: 69

Interaction between the prover (Lean) and the language modelInteraction between the prover and Lean

[1] Polu, S. et al. Formal Mathematics Statement Curriculum Learning. 2022.

lean-gym [1] provides a theorem proving environment

lean-gym

⊢ a + b + c = c + b + a
(initial tactic state)

init_search:

add_abc real
(theorem name, namespaces) language model

GOAL ⊢ a + b + c = c + b + a PROOFSTEP
(prompt)

Credit to Zhengying Liu at Huawei Noah’s Ark Lab

57 (4) total: 69

Interaction between the prover (Lean) and the language modelInteraction between the prover and Lean

[1] Polu, S. et al. Formal Mathematics Statement Curriculum Learning. 2022.

lean-gym [1] provides a theorem proving environment

lean-gym

⊢ a + b + c = c + b + a
(initial tactic state)

init_search:

add_abc real
(theorem name, namespaces) language model

GOAL ⊢ a + b + c = c + b + a PROOFSTEP
(prompt)

infer / sample

Credit to Zhengying Liu at Huawei Noah’s Ark Lab

57 (5) total: 69

Interaction between the prover (Lean) and the language modelInteraction between the prover and Lean

[1] Polu, S. et al. Formal Mathematics Statement Curriculum Learning. 2022.

lean-gym [1] provides a theorem proving environment

lean-gym

⊢ a + b + c = c + b + a
(initial tactic state)

init_search:

add_abc real
(theorem name, namespaces) language model

GOAL ⊢ a + b + c = c + b + a PROOFSTEP
(prompt)

add_comm c b
(tactic)

infer / sample

Credit to Zhengying Liu at Huawei Noah’s Ark Lab

57 (6) total: 69

Interaction between the prover (Lean) and the language modelInteraction between the prover and Lean

[1] Polu, S. et al. Formal Mathematics Statement Curriculum Learning. 2022.

lean-gym [1] provides a theorem proving environment

lean-gym

⊢ a + b + c = c + b + a
(initial tactic state)

init_search:

add_abc real
(theorem name, namespaces) language model

GOAL ⊢ a + b + c = c + b + a PROOFSTEP
(prompt)

add_comm c b
(tactic)

infer / sample

Credit to Zhengying Liu at Huawei Noah’s Ark Lab

57 (7) total: 69

Interaction between the prover (Lean) and the language modelInteraction between the prover and Lean

[1] Polu, S. et al. Formal Mathematics Statement Curriculum Learning. 2022.

lean-gym [1] provides a theorem proving environment

lean-gym

⊢ a + b + c = c + b + a
(initial tactic state)

init_search:

add_abc real
(theorem name, namespaces) language model

GOAL ⊢ a + b + c = c + b + a PROOFSTEP
(prompt)

add_comm c b
(tactic)

run_tac:

add_comm c b

infer / sample

Credit to Zhengying Liu at Huawei Noah’s Ark Lab

57 (8) total: 69

Interaction between the prover (Lean) and the language modelInteraction between the prover and Lean

[1] Polu, S. et al. Formal Mathematics Statement Curriculum Learning. 2022.

lean-gym [1] provides a theorem proving environment

lean-gym

⊢ a + b + c = c + b + a
(initial tactic state)

init_search:

add_abc real
(theorem name, namespaces) language model

GOAL ⊢ a + b + c = c + b + a PROOFSTEP
(prompt)

add_comm c b
(tactic)

⊢ a + b + c = b + c + a
(new tactic state)

run_tac:

add_comm c b

infer / sample

Credit to Zhengying Liu at Huawei Noah’s Ark Lab

57 (9) total: 69

Interaction between the prover (Lean) and the language modelInteraction between the prover and Lean

[1] Polu, S. et al. Formal Mathematics Statement Curriculum Learning. 2022.

lean-gym [1] provides a theorem proving environment

lean-gym

⊢ a + b + c = c + b + a
(initial tactic state)

init_search:

add_abc real
(theorem name, namespaces) language model

GOAL ⊢ a + b + c = c + b + a PROOFSTEP
(prompt)

add_comm c b
(tactic)

⊢ a + b + c = b + c + a
(new tactic state)

...

run_tac:

add_comm c b

infer / sample

Credit to Zhengying Liu at Huawei Noah’s Ark Lab

57 (10) total: 69

DT-Solver (ACL 2023)
DT-Solver (ACL 2023)

Wang et al., DT-Solver: Automated Theorem Proving with ..., ACL 2023

Credit to Zhengying Liu at Huawei Noah’s Ark Lab

58 total: 69

MUSTARD (ICLR 2024)
MUSTARD (ICLR 2024)

Y. Huang et al., “MUSTARD: Mastering Uniform Synthesis of Theorem and Proof Data,”
Y. Huang et al., MUSTARD: Mastering Uniform Synthesis of Theorem and Proof Data, ICLR 2024

Credit to Zhengying Liu at Huawei Noah’s Ark Lab

59 total: 69

LEGO-Prover (ICLR 2024)

LEGO-Prover = Prover + Evolver

Prover: the prover proves the theorem modularly using
the retrieved skill.
Input:

- informal & formal statement
- 6 retrieved skills from skill library

Output:
- formal proof
- new skill

Evolver: the evolver transforms the skill for reusability
and generalizability.
Input:

- Skill in the skill library
Output:

- Verified evolved skill

Prover

Evolver

LEGO-Prover (ICLR 2024)

Wang, H. et al., “LEGO-Prover: Neural Theorem Proving with Growing Libraries.”Wang et al., LEGO-Prover: Neural Theorem Proving With Growing Libraries, ICLR 2024

Credit to Zhengying Liu at Huawei Noah’s Ark Lab

60 (1) total: 69

LEGO-Prover (ICLR 2024)LEGO-Prover (ICLR 2024 – under review)

Wang et al., LEGO-Prover: Neural Theorem Proving With Growing Libraries, ICLR 2024

Credit to Zhengying Liu at Huawei Noah’s Ark Lab

60 (2) total: 69

MetaMath: 通过训练数据增强改进LLM数学问题求解能力

Published as a conference paper at ICLR 2024

METAMATH: BOOTSTRAP YOUR OWN MATHEMATICAL

QUESTIONS FOR LARGE LANGUAGE MODELS

Longhui Yu1,⋆ Weisen Jiang2,3,⋆ Han Shi4,† Jincheng Yu3,4 Zhengying Liu4

Yu Zhang2 James T. Kwok3 Zhenguo Li4 Adrian Weller1,5 Weiyang Liu1,6,†

1University of Cambridge 2Southern University of Science and Technology
3Hong Kong University of Science and Technology 4Huawei Noah’s Ark Lab
5The Alan Turing Institute 6Max Planck Institute for Intelligent Systems - Tübingen
yulonghui@stu.pku.edu.cn, wjiangar@cse.ust.hk, shi.han@huawei.com, wl396@cam.ac.uk

Project page: meta-math.github.io

ABSTRACT

Large language models (LLMs) have pushed the limits of natural language un-
derstanding and exhibited excellent problem-solving ability. Despite the great
success, most existing open-source LLMs (e.g., LLaMA-2) are still far away from
satisfactory for solving mathematical problems due to the complex reasoning proce-
dures. To bridge this gap, we propose MetaMath, a finetuned language model that
specializes in mathematical reasoning. Specifically, we start by bootstrapping math-
ematical questions by rewriting the question from multiple perspectives, which
results in a new dataset called MetaMathQA. Then we finetune the LLaMA-2
models on MetaMathQA. Experimental results on two popular benchmarks (i.e.,
GSM8K and MATH) for mathematical reasoning demonstrate that MetaMath out-
performs a suite of open-source LLMs by a significant margin. Our MetaMath-7B
model achieves 66.5% on GSM8K and 19.8% on MATH, exceeding the state-of-
the-art models of the same size by 11.5% and 8.7%. Particularly, MetaMath-70B
achieves an accuracy of 82.3% on GSM8K, slightly better than GPT-3.5-Turbo.
We release the MetaMathQA dataset, the MetaMath models with different model
sizes and the training code for public use.

Meta-Question: James buys 5

packs of beef that are 4 pounds each.

The price of beef is $5.50 per pound.

How much did he pay?

MetaMathQA

Answer: He bought 5*4=20

pounds of beef. So he paid 20 * 5.5

= $110. The answer is: 110

Self-Verification Question: James buys x packs of beef that are 4

pounds each. The price of beef is $5.50 per pound. He paid 110. What is

the value of unknown variable x? Answer: ……

Rephrasing Question: What is the total amount that James paid when

he purchased 5 packs of beef, each weighing 4 pounds, at a price of $5.50

per pound? Answer: ……

FOBAR Question: James buys x packs of beef that are 4 pounds each.

The price of beef is $5.50 per pound. How much did he pay? If we know

the answer to the above question is 110, what is the value of unknown

variable x? Answer: ……

Answer Augment: James buys 5 packs of beef that are 4 pounds each,

so he buys a total of 5 * 4 = 20 pounds of beef. The price of beef is $5.50

per pound, so he pays 20 * $5.50 = $110. The answer is: 110

Question Bootstrapping

MetaMath
Finetune

LLaMA-2

Original Data

7B 13B 70B
0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y
(%

)

66.5
72.3

82.3

GSM8K
SFT RFT WizardMath MetaMath

7B 13B 70B
0

5

10

15

20

25

30

Te
st

 A
cc

ur
ac

y
(%

)

19.8
22.4

26.6

MATH
LLaMA-2 WizardMath MetaMath

Figure 1: Overview of the MetaMathQA dataset and the mathematical problem-solving LLM – MetaMath. We
note that our MetaMath-70B is finetuned by QLoRA [15] due to the computing resource limitation.

⋆Equal contribution †Corresponding author

1

ar
X

iv
:2

30
9.

12
28

4v
4

 [
cs

.C
L

]
 3

 M
ay

 2
02

4

Yu et al.,Metamath: Bootstrap Your Own Mathematical Questions For Large Language Models, arXiv:2309.12284v4

61 total: 69

DeepMind: solve IMO problems at a silver medalist level

62 total: 69

神经和符号的结合是实现真正的人类水平智能的必经之路

利用符号推理数据训练增强大语言模型的推理能力

基于大语言模型的神经符号系统

利用神经符号系统强化训练的大语言模型

在大语言模型内部引入符号计算模块

总结

Content

利用神经符号系统强化训练的大语言模型

▶ 此类系统在使用时（推理态）仍然是一个单纯的大语言模型

▶ 但这个模型在训练的时候，使用了神经符号系统和强化学习的方法进行训练，
使其获得了强大的推理能力

▶ 这类系统的典型例子就是OpenAI o1模型
▶ 这类模型比原先的大语言模型在推理能力上有大幅度的提高，但在处理复杂的
符号推理任务时，仍然无法超过有外部符号系统加持的神经符号系统（例
如OpenAI o1模型在奥林匹克数学竞赛IMO级别的任务上仍然不
如AlphaGeometry和AlphaProof）。

63 total: 69

OpenAI o1什么是OpenAI o1
• OpenAI o1 是 2024 年 9 月 12 日 OpenAI 正式对外发布的一款新

模型，是该公司下一代 “推理” 模型中的第一个。

• o1具有强大的推理能力：

• 在竞争性编程问题 （Codeforces） 中排名第 89 个百分位，

• 在美国数学奥林匹克竞赛 （AIME） 资格赛中跻身美国前 500 名学生之列，

• 在物理、生物和化学问题的基准 （GPQA） 上超过了人类博士水平的准确
性。

• 此次发布同时包括了两个版本：o1-preview 和 o1-mini。o1-mini
是一个更小，更便宜的版本，在编码方面特别有效。

• 正式的o1版本预期将在1-2个月内发布。

• 相比GPT-4o等模型，o1速度相对较慢，成本相对更高。

• 应用场景：适用于解决复杂的数学、科学、编程等多领域的复杂问题，
为需要深度推理和复杂任务处理的场景提供了新的解决方案。

• 模型命名从1开始一个新的序列，
而且不再以GPT为前缀

• 传说中的草莓模型(strawberry)，
或猎户座(orion)

• o代表OpenAI，不代表猎户座

64 (1) total: 69

OpenAI o1o1模型背后的技术

• 慢思考：采用类人的“慢思考”方法，使用更多的token进行推理，从而得出更准确的结论。o1在训练和推理中都采用了更多的

token，通过反复的尝试、比较、权衡来得到最优解，而不是试图一次性得到结论。

• 思维链推理技术（CoT）：模型利用这种技术将复杂问题分解为更小、更易管理的步骤，然后按照顺序逐步解决。如同人类在思

考复杂问题时会分步骤进行分析和推理，o1 模型通过这种方式可以更系统地处理问题，提高解决问题的准确性和效率。例如在解

决数学问题或解码密码时，会有条不紊地测试各种策略，并根据中间结果优化解决方案。

• 蒙特卡洛树搜索和强化学习技术（所谓Q*）：思维链的每一步骤都可以有多种决策，整个推理过程变成一个树搜索，搜索决策机

制采用强化学习方法进行学习，通过优化外界奖励信息，学习到最佳的决策模型。

• 定制的训练数据集：利用独特先进的全新训练数据集 —— 由大量推理数据及大量科学文献构成。此等多元化而又专业化的数据为

o1 奠定了坚实的知识基础，使得它在应对复杂问题时能更具灵活性与适应力。例如，新系列模型更新后的性能类似于博士生在物

理、化学、生物学中完成具挑战性的基准任务。

• 未知的工程know-how：OpenAI能够成功在目前最先进的大模型上继续scale-up起来，并取得这么大的突破，其中一定有大量的

工程问题需要解决，这其中积累的know-how，是不可忽视的。

64 (2) total: 69

OpenAI o1是一个神经符号系统吗？

▶ o1应该没有采用Lean语言这样复杂的符号系统，因此它在IMO竞赛上还没有达
到AlphaProof和AlphaGeometry2的水平。

▶ 但o1在蒙特卡洛树搜索和强化学习训练中，应该采用了某种符号系统，提供外
部的奖励信息：
▶ 这里的符号系统，最简单的情况，可以是一个简单的字符串匹配系统，判断答案
是否跟Gound Truth一致；

▶ 更复杂的情况，也可以是一个Python引擎，用于判断生成的代码或者公式能否运
行得到正确的结果；

▶ 训练中（特别是数据合成过程中）所使用的的符号系统可能非常多样化，
OpenAI对o1的训练过程给出的信息非常少，很难推测其具体形式。

▶ o1的推理态是否采用了神经符号结合的方式：应该没有。

65 total: 69

神经和符号的结合是实现真正的人类水平智能的必经之路

利用符号推理数据训练增强大语言模型的推理能力

基于大语言模型的神经符号系统

利用神经符号系统强化训练的大语言模型

在大语言模型内部引入符号计算模块

总结

Content

在Transformer架构中引入符号计算模块
▶ 目前，大语言模型和符号化知识表示的唯一接口就是token序列：提示词输入+自回归
生成输出

▶ 其他所有带结构的知识表示，都需要转化成线性的token序列（语言或图像）才能跟大
语言模型交互

▶ 线性化以后的带结构的知识表示，虽然理论上包含了所有的结构信息，但实际上大语
言模型很难准确捕获到完整的结构信息

▶ 是否可能在Transformer架构中直接引入符号计算模块？
▶ 类似人脑中有海马体，从仿生角度看，在语言模型内部引入符号计算模块有一定的合理性
▶ 这种符号处理模块应该能够直接处理实体、关系等具有明确语义的符号，而不仅仅
是tokens

LLM
Symbolic
Engine LLMSymbolic

Engine

66 total: 69

稀疏自编码：从Transformer中提取可解释的特征

▶ 近期一系列有关稀疏自编码器的工作，可以从Transformer的激活神经元中提取可解释的特征，
为在Transformer中植入可解释和可操控的符号推理部件提供了可能性

▶ 这方面的研究仍然还处于早期阶段，还有很多问题亟待解决，但潜力巨大。

Figure 1: An overview of our method. We a) sample the internal activations of a language model,
either the residual stream, MLP sublayer, or attention head sublayer; b) use these activations to train
a neural network, a sparse autoencoder whose weights form a feature dictionary; c) interpret the
resulting features with techniques such as OpenAI’s autointerpretability scores.

high sparsity, interference between non-orthogonal features prevents any performance gain from
superposition. This suggests that we may be able to recover the network’s features by finding a set
of directions in activation space such that each activation vector can be reconstructed from a sparse
linear combinations of these directions. This is equivalent to the well-known problem of sparse
dictionary learning (Olshausen & Field, 1997).

Building on Sharkey et al. (2023), we train sparse autoencoders to learn these sets of directions. Our
approach is also similar to Yun et al. (2021), who apply sparse dictionary learning to all residual
stream layers in a language model simultaneously. Our method is summarised in Figure 1 and
described in Section 2.

We then use several techniques to verify that our learned features represent a semantically mean-
ingful decomposition of the activation space. First, we show that our features are on average more
interpretable than neurons and other matrix decomposition techniques, as measured by autointer-
pretability scores (Section 3) (Bills et al., 2023). Next, we show that we are able to pinpoint the
features used for a set task more precisely than other methods (Section 4). Finally, we run case
studies on a small number of features, showing that they are not only monosemantic but also have
predictable effects on the model outputs, and can be used for fine-grained circuit detection. (Section
5).

2 TAKING FEATURES OUT OF SUPERPOSITION WITH SPARSE DICTIONARY
LEARNING

To take network features out of superposition, we employ techniques from sparse dictionary learn-
ing (Olshausen & Field, 1997; Lee et al., 2006). Suppose that each of a given set of vectors
{xi}nvec

i=1 ⊂ Rd is composed of a sparse linear combination of unknown vectors {gj}ngt
j=1 ⊂ Rd,

i.e. xi =
∑

j ai,jgj where ai is a sparse vector. In our case, the data vectors {xi}nvec
i=1 are internal

activations of a language model, such as Pythia-70M (Biderman et al., 2023), and {gj}ngt
j=1 are un-

known, ground truth network features. We would like learn a dictionary of vectors, called dictionary
features, {fk}nfeat

k=1 ⊂ Rd where for any network feature gj there exists a dictionary feature fk such
that gj ≈ fk.

To learn the dictionary, we train an autoencoder with a sparsity penalty term on its hidden activations.
The autoencoder is a neural network with a single hidden layer of size dhid = Rdin, where din is
the dimension of the language model internal activation vectors1, and R is a hyperparameter that
controls the ratio of the feature dictionary size to the model dimension. We use the ReLU activation
function in the hidden layer (Fukushima, 1975). We also use tied weights for our neural network,
meaning the weight matrices of the encoder and decoder are transposes of each other.2 Thus, on

1We mainly study residual streams in Pythia-70M and Pythia 410-M, for which the residual streams are of
size din = 512 and din = 1024, respectively (Biderman et al., 2023)

2We use tied weights because (a) they encode our expectation that the directions which detect and define the
feature should be the same or highly similar, (b) they halve the memory cost of the model, and (c) they remove

2

References:
▶ Cunningham et al., Sparse Autoencoders Find Highly Interpretable Features in Language Models, 2023.09
▶ Bricken et al. (Anthropic), Towards Monosemanticity: Decomposing Language Models With Dictionary

Learning, 2023.10.04
▶ Gao et al. (OpenAI), Scaling and evaluating sparse autoencoders, 2024.06.06

67 total: 69

神经和符号的结合是实现真正的人类水平智能的必经之路

利用符号推理数据训练增强大语言模型的推理能力

基于大语言模型的神经符号系统

利用神经符号系统强化训练的大语言模型

在大语言模型内部引入符号计算模块

总结

Content

总结

▶ 神经和符号的结合是实现真正的人类水平智能的必经之路。
▶ 神经与符号的GAP是目前大模型很多问题的根源。

▶ 神经符号结合有多种可能的实现路径：
▶ LLM本身借助类XoT数据训练可以具有一定的符号推理能力
▶ 基于LLM的神经符号系统：大语言模型+外部符号计算引擎，可分为以下类型：

▶ 融合搜索引擎的大语言模型
▶ 融合工具插件调用的大语言模型
▶ 基于大语言模型的智能体
▶ 使用语言模型增强的逻辑推理引擎（如基于大模型的数学定理证明系统）

▶ 利用神经符号系统强化训练的大语言模型（o1路线）
▶ 直接在Transformer架构中引入符号计算模块也是值得探索的路径。

68 total: 69

Thank you!

把数字世界带入每个人、每个家庭、
每个组织，构建万物互联的智能世界。
Bring digital to every person, home and organization
for a fully connected, intelligent world.

Copyright©2018 Huawei Technologies Co., Ltd.
All Rights Reserved.

The information in this document may contain
predictive statements including, without limitation,
statements regarding the future financial and
operating results, future product portfolio, new
technology, etc. There are a number of factors that
could cause actual results and developments to
differ materially from those expressed or implied in
the predictive statements. Therefore, such
information is provided for reference purpose only
and constitutes neither an offer nor an acceptance.
Huawei may change the information at any time
without notice.

	神经和符号的结合是实现真正的人类水平智能的必经之路
	神经网络 vs. 符号计算
	大语言模型（LLM）具备了一定的符号处理能力
	大语言模型的符号计算能力仍然欠缺
	实现真正的人类水平智能，需要AI模型中引入符号计算吗？
	大语言模型还不真正具备系统2的思考能力
	生物智能的进化 vs. 人工智能的进化
	神经与符号的GAP是目前大模型很多问题的根源
	符号化知识表示的形式
	符号化知识表示的类型
	符号化知识表示的多样性难题

	利用符号推理数据训练增强大语言模型的推理能力
	通过思维链及其衍生技术强化大语言模型本身的推理能力
	Chain-of-Thought and Thinking-Step-by-Step
	Self-consistency improves CoT
	Progressive-Hint Prompting improves CoT
	Think Before You Speak: Training LMs With Pause Tokens

	基于大语言模型的神经符号系统
	基于大语言模型的神经符号系统
	融合搜索引擎的大语言模型：扩展知识的边界
	检索增强的生成（RAG）：LLM+搜索引擎
	Pangu-Web系统框架
	Pangu-Web样例：回答实时问题
	Pangu-Web样例：回答误导性问题
	Pangu-Web样例：拒绝回答问题
	Pangu-Web样例：回答长尾问题
	Pangu-Web样例：回答代码问题
	Geek: A method for implicit Boolean QA
	知识图谱、语义网Semantic Web
	知识图谱技术金字塔
	知识图谱与神经网络的结合
	GraphRAG
	符号化知识表示的其他形式
	图像（image）作为大语言模型和符号化知识的接口
	LayoutGPT
	图（Graph）作为大语言模型和符号化知识的接口
	形式语言与神经网络结合的方法

	融合工具和插件调用的大语言模型：借助外部符号工具能力
	Pangu-Tool: 通过有监督微调SFT实现外部工具调用
	Pangu-Tool: 通过上下文学习ICL实现外部工具调用
	Pangu-Tool: 通过思维链CoT实现外部工具调用的自动规划和搜索
	Pangu-Tool样例：数学推理
	Pangu-Tool样例：数学推理
	Pangu-Tool样例：表格处理
	Pangu-Tool样例：表格处理
	Pangu-Tool样例：日历查询
	Pangu-Tool样例：图片生成
	Pangu-Tool样例：数学推理中的多轮工具调用
	Pangu-Tool样例：基于工具反馈的自我修复
	Pangu-Tool样例：基于工具反馈的例外处理
	Pangu-Tool样例：模型知识与工具调用结合
	Pangu-Tool样例：模型知识与工具调用结合

	基于大语言模型的智能体（LLM Agent）：综合性神经符号系统
	大模型智能体（LLM Agent）：一个完整的神经符号系统
	LLM-driven AI agents
	Summarization and accumulation of experience: Voyager
	Emergent social behavior from multi-agent interaction: Smallville
	大模型智能体（LLM Agent）还有很长路要走

	使用大语言模型增强的逻辑推理系统：实现数学定理证明
	The Curry-Howard Isomorphism 科里-霍华德同构
	Lean语言
	Theorem Proving - Holy Grail of AI
	Automated Theorem Proving (ATP) - the Problem
	Interaction between the prover (Lean) and the language model
	DT-Solver (ACL 2023)
	MUSTARD (ICLR 2024)
	LEGO-Prover (ICLR 2024)
	MetaMath: 通过训练数据增强改进LLM数学问题求解能力
	DeepMind: solve IMO problems at a silver medalist level

	利用神经符号系统强化训练的大语言模型
	利用神经符号系统强化训练的大语言模型
	OpenAI o1
	OpenAI o1是一个神经符号系统吗？

	在大语言模型内部引入符号计算模块
	在Transformer架构中引入符号计算模块
	稀疏自编码：从Transformer中提取可解释的特征

	总结
	总结

